

Multi-terminal architecture in molecular junctions: towards electrical and optical gating

<u>M.L. Della Rocca</u>, C. Barraud, P. Lafarge (TELEM) P. Martin, J.-C. Lacroix (NEC)

Hired 1 year post-doc: Kevin Dalla Francesca

Molecular electronics: few recent works

Negative differential conductance

Perrin et al., Nature Nanotech. 9, 830 (2014)

Rectification

Chen et al., Nature Nanotech. 12, 797 (2017)

Kim et al., Nature Nanotech. 9, 881 (2014)

LABEX SEAM

Large area molecular junctions

Quantum Interference

Horizontal architecture: high aspect ratio nantrenches

Fabrication of high aspect ratio nanotrenches (~10⁴)

Dayen et al., Nanotechnology 21, 335303 (2010)

Fursina et al., APL 92, 113102 (2008)

Horizontal architecture: high aspect ratio nantrenches

Fursina et al., APL 92, 113102 (2008)

Edge mediated shadow evaporation method

Electrografting of the molecular layer as last step of the molecular junction fabrication

Optimization of the deposition angle

Nanotrenches width ~10 -15 nm, 33% open circuits

- мафа

Nanotrenches width ~12-17 nm, 75% open circuits

Electrical characterization of non-grafted nanotrenches

Molecular layer electrografting (Itodys)

Métal (Au, C, PPF)/ molécule (FL, BP, NBP, NAB, AB)/ métal (Au, Cu, C) Anariba et al., J. Phys. Chem. B 109, 11163 (2005) Bonifas and R.L. McCreery, Nature Nanotech., 5, 612 (2010) Choi et al., Science 320, 1482 (2008) Bergren et al., Phys. Chem 114, 15806 (2010)

Electroreduction of diazionium salts

Electrical characterization of grafted nanotrenches

Anthraquinone (AQ), nominal thickness ~ 15 nm > comparable to nanotrench width

naida

Ne s

Electrical characterization of grafted nanotrenches

Anthraquinone (AQ), nominal thickness ~ 15 nm > comparable to nanotrench width

For a grafted AQ thickness of \sim 5 nm (< to nanotrench width) \longrightarrow totality of open circuits

MILS BIDD

maidys

Better control molecular contact area?

Work in progress:

- ✓ More statistics on electrical characterization before and after grafting at low T
- \checkmark AFM analysis of grafting
- \checkmark Insertion of local top gate
- \checkmark Optical gating

Work in progress:

- ✓ More statistics on electrical characterization before and after grafting at low T
- ✓ AFM analysis of grafting
- ✓ Insertion of local top gate...playing with 2D materials
- \checkmark Optical gating

Hot pick-up technique (J. Rastikian, S. Timpa, C. Barraud)

Thank you!

