

Compréhension et optimisation des procédés de synthèse de dépôt diamant par plasmas: Contribution de la modélisation et des diagnostics spectroscopiques

G. Lombardi et al

INTRODUCTION TO

SYNTHETIC DIAMOND

Diamond properties

- Exceptional mechanical Hardness and Thermal Conductivity (2200 W/mK)
 - Wide bangap semiconductor (5.5 eV)
 - Optical transparency (Down to 225nm)
 - Resistant to ionizing particles and chemicals
 - Biocompatible
 - Wide **electrochemical** window

For many applications only thin diamond layers with moderate quality (nano or polycrystalline) needed...

However increasing interest in large size high quality crystals motivated by high-end applications in optics, electronics, quantum physics... (not just for jewelry!)

Single crystal diamond applications

	civide	Ç	
sCV	D Diamond De	etector	
	+	OUT	
Ser.No.: I	B10041	1	

DIAMOND DETECTORS

For high energy particles Thick intrinsic layers

HIGH POWER DEVICES

Thick p+ diamond crystals for vertical diodes

J. Achard et al. Diam. & Relat. Mat. 20, 145-152 (2011).

Diamond Materials

PAR S

PARIS

Element 6

OPTICAL WINDOWS

For high-power lasers, gyrotron and Raman lasers

Single crystal diamond applications

LUMINESCENT DEFECTS IN DIAMOND AS QU-BITS FOR MAGNETOMETRY

The Nitrogen-Vacancy centre

L. Rondin et al. Magnetometry with nitrogen-vacancy defects in diamond, ArXiv:1311.5214v2 (2013)

PAR S

PARIS

Magnetic field sensing

5

BASIC PRINCIPLES OF THE PLASMA

ASSISTED CHEMICAL VAPOUR

DEPOSITION PROCESS

LABEX SEAM Plasma-Assisted CVD

TYPICAL MW-PACVD CONDITIONS

Mécanismes de croissance

 $\frac{Création de sites actifs}{Cd - H + H \xrightarrow{k_1} Cd^* + H_2}$ $Cd^* + H \xrightarrow{k_2} Cd - H$

Adsorption du radical CH₃ et deshydrogénation

$$\begin{array}{c} Cd^{*} + CH_{3} \xrightarrow[]{k_{3}}{\longleftarrow} Cd - CH_{3} \\ Cd - CH_{3} + H \xrightarrow[]{k_{5}}{\longrightarrow} Cd - CH_{2}^{*} + H_{2} \\ Cd - CH_{2}^{*} + H \xrightarrow[]{k_{6}}{\longrightarrow} Cd - Cd - H + H_{2} \end{array}$$

 $G_{(100)} = k_3 \frac{n_s}{n_d} \left(\frac{k_1}{k_1 + k_2}\right) \frac{[CH_3]_s [H]_s}{\frac{k_4}{k_5} + [H]_s}$

Plasma-Assisted CVD

Goodwin's growth model

$$G = \frac{g_1 f^* [C_n H_m] [H]}{g_2 + [H]},$$

Goodwin, D. G. "Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry" J. Appl. Phys. 74 (11) 1993: 6888-6894.

Higher pressure and microwave power \rightarrow higher gas temperature \rightarrow easier dissociation of H₂ and CH₄ \rightarrow higher growth rates and higher quality

F. Silva, K. Hassouni, X. Bonnin et al., Journal of Physics: Condensed Matter 21, 364202 (2009).

PARIS

DE

✓ <u>Objectives:</u>

- To better understand the **physico-chemical processes** occurring in Micro-Wave Plasma Assisted Chemical Vapor Deposition (MW-PACVD) reactors
- To **optimize** the MW-PACVD process
- To match the aimed **properties and applications** of **diamond films**

✓ <u>Approach:</u>

- As a first step, need of a **thorough analysis of the plasma phase**, to control key parameters of the process : **gas temperature / active species densities**
- **Two example of studies**: (i) mono/micro-crystalline diamond, and (ii) nano-crystalline diamond

✓ Main tools used:

- Advanced plasma diagnostics (Optical Emission Spectroscopy, IR Laser Absorption Spectroscopy, UV Broadband Absorption Spectroscopy, ...)
- **Modelling** (0D and 1D thermochemical fluid models)

<u>Issues to take into account:</u>

- Stiff temperatures and densities gradients (integrated measurements, ...)
- **High pressure** (quenching, ...)
- **Complex chemistry** of transient species at low concentrations

Méthodologie

LABEX SEAM Exemples de réacteurs au LSPM

• Réacteur bell jar

Cavité réelle

Cavité couplée

PAR S DIDEROT

PABIS 13

Réacteur métallique

Cavité couplée

LABEX SEAM Outils développés

• Modèles et codes (Hassouni et al)

Validation expérimentale (Gicquel et al) : OES, TDLAS, LIF, CARS, Interférométrie MW

LABEX SEAM **Description des modèles**

Modèle 2D **Code 1D** : Axial et Radial axisymétrique Domaine de simulation 1D Axial -Axe de symétrie 210 mailles (z=axial) Hublot Domaine de Perte sur le métal simulation 1D Radial 100 mailles Méta Plasma Axe Radial (r) Substrat PAR S D DEROT PARIS 12

Principe du modèle 1-D

✓ Modèle thermo-chimique du plasma hors-équilibre :

- 2 modes d'énergie : T_g et fdee
- Pour les plasmas H_2 : 8 espèces / 29 réactions
- Pour les plasmas H₂/CH₄ : 28 espèces / 131 réactions
- H₂ , H(n=1-3), H₁₋₃⁺, CH₀₋₄ , C₂H₀₋₆ , CH₃₋₅⁺, C₂H₂₋₆⁺, e⁻

✓ Paramètres d'entrée : Densité de puissance, composition du gaz, épaisseurs de couches limites pour T_g , H, et les autres espèces

✓ Transport = Diffusion

3 types d'équations :

$$\checkmark \text{ Continuité} : \left[\frac{dY_s}{dt} = \frac{W_s}{\rho} - \frac{1}{\rho} \cdot \left(\frac{1}{r} \cdot \frac{d(r.F_r)}{dr} \right) \right] \Rightarrow [X]$$

$$\checkmark \text{ Energie des électrons} : \left[\frac{\partial \widetilde{E}_e}{\partial t} = [PMW - Q_{e-v} - Q_{e-t} - Q_{e-x}] \cdot \frac{1}{\rho} - \left[\frac{1}{r} \cdot \frac{d}{dr} \left(r.F_r^{(NRJe)} \right) \right] \cdot \frac{1}{\rho} \right] \Rightarrow \mathsf{T}_e$$

$$\checkmark \text{ Energie totale} : \left[\frac{\partial \widetilde{E}}{\partial t} = [PMW - Q_{rad} - S_p] \cdot \frac{1}{\rho} - \left[\frac{1}{r} \cdot \frac{d}{dr} \left(r.F_r^{(NRJ)} \right) \right] \cdot \frac{1}{\rho} \right] \Rightarrow \mathsf{T}_g$$

H₂/CH₄ PLASMAS FOR POLY- AND MONO-CRYSTALLINE DIAMOND

H₂/CH₄ plasmas for poly- and mono- crystalline diamond

• <u>Example of studies (*)</u>: Quantification of the methyl radical (CH₃) by means of UV-Broadband Absorption spectroscopy and IR Tunable Diode Laser Absorption Spectroscopy

 $B(^{2}A_{1}') \leftarrow X(^{2}A_{2}'')$ electronic transition of CH_{3} (216 nm)

Q(12,12) line of the v₂ band of CH₃ (612.41344 cm⁻¹)

18

H₂/CH₄ plasmas for poly- and mono- crystalline diamond

• Analysis of the hydrocarbon chemistry occurring in diamond deposition plasmas, by cross-comparison between IR TDLAS spectroscopic measurements and 1D-modeling ^(*)

CH₄ and CH₃ mole fractions

Carbon containing species mole fractions integrated along the **IR** optical path depending on the power (H_2/CH_4 (95:5))

Calculated values from 1D average radial model shown by linked filled symbols

(*) G. Lombardi, K. Hassouni, G. D. Stancu, L. Mechold, J. Röpcke, A. Gicquel, PSST and JAP 2005 C. Rond, S. Hamann, M. Wartel, G. Lombardi, A. Gicquel, J. Röpcke, JAP 2015 / PHC Procope 2012-2013

Composition du plasma selon l'axe de symétrie du réacteur

PARIS DIDEROT

PARIS 13

Basse P => H et CH₃ produits dans le plasma

LABEX SEAM

A haute pression, la production de H suit la température alors que CH₃ est confiné dans les zones plus froides

CH₃ est formé à une température de gaz dans la gamme 1200 – 2200 K

ns two photon laser induced fluorescence (TALIF)

H atoms temperature

- ➤ Gas temperature needed for :
 - quenching coefficients
 - H₂ density
- H atom temperature ~ gas temperature *

PARIS DIDEROT

PARIS

H atoms density

PAR S DEROT

PARIS 13

H₂99% - CH₄ 1% 3000 W

> 55 % at 3 mm > 75 % at 12 and 22 mm

2D H₂-CH₄ Self-consistent model

 \mathbf{C}

[H] (cm⁻³)

D

[H] : 5.10¹⁴ ⇒ 4.10¹⁷ cm⁻³

F. Silva et al., J. Phys.: Condens. Matter 21 (2009) 364202

Hydrodynamic effects

Stability of plasma in MW reactor at 200 mbar

PARIS

Hydrocarbon densities

 $\begin{array}{c} \mbox{28 species} & \mbox{104 Reactions} \\ \mbox{First self-consistent simulations for CH_4+H_2 plasmas} \end{array}$

Conditions: 200 mbar and 2500 W and 4% CH_4

Effect of methane on stability of MW reactor

PARIS 13

Effect of methane on stability of MW reactor

PARIS 12

Effect of methane on stability of MW reactor

PARIS DIDEROT

PARIS (D

Threshold MW power at which transition from one ball to two ball plasma takes place as a function of methane concentration. Experiments and simulations

H₂/CH₄/B₂H₆ DISCHARGES FOR P-DOPED DIAMOND

H₂/CH₄/B₂H₆ discharges for p-doped diamond

Boron = p-type dopant (holes)

Objective => Grow thick layers with high B-doping for vertical Schottky diode

PAR S DIDEROT

PARIS

Degree of decomposed B_2H_6 depending on pressure and power for different admixtures of B_2H_6 to the hydrogen feed gas ^(*)

Density of atomic boron depending on the pressure and the power for different admixtures of CH_4 with a B_2H_6 content of 66 ppm^(*)

(*) S. Hamann, C. Rond, A.V. Pipa, M. Wartel, G. Lombardi, A. Gicquel, J. Röpcke PSST 2014 / PHC Procope 2012-2013 C. Rond, R. Salem, S. Hamann, G. Lombardi, J. Röpcke, A. Gicquel, PSST 2016 / PHC Procope 2012-2013 ³⁵

LABEX SEAM Boron atom density (QOES)

PARIS DIDEROT

PARIS

Optical Emission Spectroscopy :

 $^{2}\mathrm{P}_{3/2}$ level is two times more populated than the $^{2}\mathrm{P}_{1/2}$ level Oscillator strength are identical

249.772 nm line is more sensitive to self-absorption.

Boron density deduced from the ratio I(249.677)/I(249.772).

Boron atom density (Absorption)

Hypothesis:

- Homogeneous plasma

- Similar emission and absorption profiles

Measurements spatially integrated along the optical path

PARIS

PARIS DIDEROT

Absorption length = 5 cm

LABEX SEAM LIF on Boron atoms

Advantages :

- Spatially resolved measurement compared to OES or OAS.
- Measurement of the ground state

Disavantages: almost no litterature about LIF on B-atom

Ar/H₂/CH₄ DISCHARGES FOR NANOCRYSTALLINE DIAMOND

Ar/H₂/CH₄ discharges for nanocrystalline diamond

- Interesting low roughness properties of Nano-Crystalline Diamond (NCD) => new applications
- Key parameters to control^(*): Gas temperature and C₂ density (growth precursor)

PAR S DIDEROT

PARIS 19

• Example of results in a Bell-jar reactor (2000's)

Typical examples of spectra obtained around 231 nm for the $C_2 (D^1 \Sigma_u^+ X^1 \Sigma_g^+)$ Mulliken system for a 97:2:1-500W (200 mbar) Ar/H₂/CH₄ plasma. (a) $D^1 \Sigma_u^+ \rightarrow X^1 \Sigma_g^+$ emission spectrum. (b) $D^1 \Sigma_u^+ \leftarrow X_1 \Sigma_a^+$ absorption spectrum.

Typical examples of spectra obtained at 516.5 nm for the C_2 ($d^3\Pi_g$ - $a^3\Pi_u$) Swan system for a 97:2:1-500W (200 mbar) Ar/H₂/CH₄ plasma. (a) $d^3\Pi_g \rightarrow a^3\Pi_u$ emission spectrum. (b) $d^3\Pi_g \leftarrow a^3\Pi_u$ absorption spectrum.

Ar/H₂/CH₄ discharges for nanocrystalline diamond

- Interesting low roughness properties of Nano-Crystalline Diamond (NCD) => new applications
- Key parameters to control^(*): Gas temperature and C₂ density (growth precursor)

PARIS DIDEROT

PARIS 10

• **Example** of results in a Bell-jar reactor (2000's)

C₂ absolute density derived from BAS measurements
 (C₂ Mulliken and Swan systems).
 C₂ density calculated with a OD thermochemical plasma model

Rotational temperatures $T_{rot}(X^1 \Sigma_g^+)$, $T_{rot}(D^1 \Sigma_u^+)$, $T_{rot}(a^3 \Pi_u)$ and $T_{rot}(d^3 \Pi_g)$ determined by BAS and OES from C_2 Mulliken and Swan systems. Gas temperature T_g calculated with a OD thermochemical plasma model

H₂/CH₄/CO₂ PLASMAS FOR LOW-TEMPERATURE NCD DEPOSITION

H₂/CH₄/CO₂ plasmas for low temperature NCD deposition

Limitations of NCD growth process:

- Insufficient adhesion properties to substrates due to residual stress
- Damages on sensitive substrate because of high deposition temperature (above 800°C)

⇒ Deposition of nano-crystalline diamond films at low-temperature needed

Plasmodie reactor (PEMA team, 2010's)

> MW Power: 1-3 kW [H₂]: 90-98 % [CH₄]: 1-5 % [CO₂]: 1-5 % Pressure: < 1 mbar

16 coaxial plasma sources arranged in 4x4 2-D matrix

- Low substrate temperature: T < 500°C

- Large area deposition: 4 inches

Some of the key parameters to control: Gas temperature and CO kinetics (etching species, surface stabilizer)⁴

parity

(*) A. Nave, B. 🛱 udrillart, S. Hamann, F. Benedic, G. Lombardi, A. Gicquel, J. H. van Helden, J. Röpcke, PSST 2016 / PHC Procope 2015-2016

Merci de votre attention !

Et remerciements aux très nombreux contributeurs du LSPM:

J. Achard, X. Aubert, B. Baudrillart, O. Brinza, C. Duluard, A. Gicquel, K. Hassouni, R. Issaoui, G. Lombardi, A. Michau, S. Prasanna, C. Rond, F. Silva, A. Tallaire, M. Wartel

XXX

