

Ingénierie de la synthèse de monocristaux de diamant CVD pour les applications à base de centres NV

J. Achard LSPM-CNRS, Université Paris 13

Colloque Labex SEAM – lundi 12 novembre 2018

Nitrogen-Vacancy centres in diamond

pink diamonds

W. Wang Gems & Gemmology 2010

One of the many optical defects Rare in natural diamonds Very common in CVD diamonds

N-V bond oriented along <111> → 4 possible orientations

Properties of NV centres

Electronic structure of the NV⁻ centre

***** PARIS 13

Pumping with a 532 nm laser \rightarrow polarisation in the |0> state

Initialising and reading the spin state at room temperature

Rondin et al. Reports on Progress in Physics 77 (2014) 056503

Properties of NV centres

Optically Detected Magnetic Resonance

Gruber et al. Science 276, 2012 (1997)

Extreme sensitivity to B field

Spin Echo

Balasubramanian et al. Nature Materials 8, 383 (2009)

Coherence time up to 2 ms @RT

Applications for NV centres

Magnetic probes with nanoscale resolution

L. Rondin APL 100, 153118 (2012)

Wide field magnetic imaging

M. Chipaux et al. The European Physical Journal D, 69 (2015) 166.

Arrays of NVs for quantum information processing and quantum cryptography

M. Loncar MRS Bulletin 38 (2013) 44

Biolabelling with bright emitters

M.P. Adam, PhD Thesis ENS Cachan 2013

DIDEROT

Creating NVs in CVD diamond

but accurate positionning possible

yield (%)

Pezzagna et al. New Journal of Physics 13, 035024 (2011).

PARIS 1

localization difficult

A. Tallaire et al., Diam. & Relat. Mat.

15, 1700-1707 (2006)

LABEX SEAM

The CVD technique for producing single crystal diamond films with NVs

13

DIDEROT

CVD growth of diamond: a KEY TECHNOLOGY

MW plasma assisted CVD Homoepitaxial growth on HPHT substrate High power densities (>100 W/cm⁻³) H₂/CH₄ (95/5) 800-1000°C

Growth rates 1-10 µm/h

--- PARIS 13

CVD growth of diamond: a KEY TECHNOLOGY

A fairly mature technology

Millimeter-thick ultra-pure

Tallaire et al., Comptes Rendus Physique 14, 169-184 (2013).

Gem-quality material

PARIS 13

B. Willems et al. Diam. & Relat. Mat. 41, 25-33 (2014)

Boron doped CVD substrates

J. Achard et al., Phys. Stat. Sol. (a), 209, 1651-1658 (2012).

Challenges for QT material synthesis

- 1. Controlling the environment of NV centres and their density for achieving long coherence times (isotopic purity, impurities of N, B etc, extended defects...)
- 2. Controlling the orientation of NV centres (among the 4 possible...)
- 3. Controlling the spatial position of NV centres (arrays of NV, deltadoped layers, NVs in photonic cavities...) and bringing NVs close to the surface (stable charge state)
- 4. Controlling the dimensions and shape of the diamond matrix (membranes, pilars, thick bulk plates)

VERY HIGH REQUIREMENTS FOR THE PACVD TECHNIQUE !

LABEX SEAM

1. Controlling NVs environment and density

DIDEROT

Isotopic purity control

DIDEROT

PARIS 13

1. Single NV centers for sensors with nanoscale accuracy

Control of doping by addition of N₂

Low amounts of N_2 (0-10ppm) Strong temperature dependence of N incorporation

NUMBER OF PARIS

DIDEROT

Isolated NV centers obtained

0.01 ppb NV⁻

Collab. ENS Cachan/LAC-CNRS

2. Creating ensembles of NV centers with high density

 FWHM around 500 kHz (Good coherence time expected)

ISSUE OF PHOTOSTABILITY Can be used for writing!

www.diadem

Further increasing NV doping?

LABEX SEAM

2. Controlling NVs orientation

DIDEROT

Growth on (110) orientation

Growth on (111) orientation

Twinning is very likely to occur during the nucleation of next layer on <111>

J.E. Butler et al. Philosophical Transactions of the Royal Society A 366 (2008) 295-311.

Under normal conditions, once a twin is formed it grows larger

PARIS

Growth on (111) orientation

"A crystal facet is stable with respect to twinning, if an infinitesimally small twin attached to that facet disappears. It is unstable, if the twin grows larger."

C. Wild et al. (1994). Diamond and Related Materials 3 373-381.

Alpha represents the relative growth rates of the (100) and (111) planes

Growth on (111) orientation

High growth temperature of **1050°C** and low methane concentration of **2%** High power densities: **250 mbar and 3.5 kW**

▶ No measurable growth on (100) \longrightarrow 6µm/h on (111) \longrightarrow α << 1.5

On HPHT substrates from Sobolev Institute

On CVD substrates from Element 6

PARIS 13

Smooth surface for up to 200 $\mu\text{m-thick}$ films

A. Tallaire et al. (2014). Diamond and Related Materials 41 34-40.

Growth on (111) orientation

Almost 100 % orientation of NV defects!

M. Lesik et al., APL 104, 113107 (2014)

Heavy doping difficult

Cracking, non uniformity, loss of preferential orientation

Collab

Growth on (113) orientation

Standard growth on (100) 3 {113} f

PARIS DIDERO

3 {113} facets formed at the corner

Growth on (113) orientation

Growth carried out under standard conditions: High plasma power densities (220-250 mbar 3-3.5kW) ; $800^{\circ}C < T < 1000^{\circ}C$; $4\% CH_{4}$

Growth on (113) orientation

Thick films at high growth rates Higher crystalline quality than (111) No stress

High doping possible 73% preferential orientation $\alpha = 29.5$ 100 (113) plane 80 73% Probability[%] 60_ PL [a.u.] $\alpha = 58.5^{\circ}$ 40. 27 % (111) 20- $\alpha = 29.5^{\circ}$ $\alpha = 58.5^{\circ}$ $\alpha = 58.5^{\circ}$ $\alpha = 100^{\circ}$ 0% 50 ppb NV⁻ $\alpha = 29.5^{\circ} \alpha = 58.5^{\circ} \alpha = 100^{\circ}$ 2.80 2.84 2.88 2.92 Frequency [GHz]

M. Lesik et al., Diam. & Relat. Mat. 56, 47-53 (2015).

Collab. ENS Cachan/LAC-CNRS and Basel University

Growth on (113) orientation

Single NVs exhibit coherence time comparable to that obtained for high quality CVD films with similar isotopic purity on standard (100)

Despite only partial preferential orientation: (113) is an interesting platform for NV centers

M. Lesign al. (15) Diamond and Related Materials 56 (2014) 47

	Conventional (100)	(111)	(113)
Substrates availability	++	+	-
Range of growth conditions	+	-	++
Growth rates	+	+	++ (x2)
Crystalline quality	++	-	++
NV center orientation	- (25%)	++ (100%)	+ (73%)
N doping efficiency	-	++	+

LABEX SEAM

3. Controlling NVs spatial localization by direct CVD growth

ARIS

Create spatially localized NVs by direct CVD growth

<u>Challenge : grow thin highly doped layers</u>

- 1. Control thickness
- 2. Control interface sharpness

 $t_{resid} = \frac{V_{chamber} \times P}{F_{total} \times P_{ATM}}$

$$N_{NV} = yield \times \eta_{incorp.} \times [N_2]$$

Reduce growth rate?

 $Th = GR \times t$

Reduce residence time?

Improve incorporation efficiency?

DIDERO

1. Changing gas phase composition

1. Changing gas phase composition

Laser microscope image of the surface

Good morphology despite presence of step bunching due to nitrogen Tallaire DRM15 1700 2006

Confocal scan of the cross-section

Possible to control NV density with N₂

Good contrast between N-doped and N-free regions

1. Changing gas phase composition

Same experiment with 5 stacked layers

1h with no intentional $N_2 \rightarrow GR = 7\mu m/h$ 1h with 50 ppm $N_2 \rightarrow GR = 30\mu m/h$ X5

Cross section luminescence image

Possible to stack layers of different doping while keeping good crystalline quality

 \rightarrow Difficult to obtain thin layers with sharp interfaces using this technique

2. Changing growth temperature

Keep the gas phase composition the same --- Vary growth temperature

Nitrogen incorporation strongly temperature dependent Temperature changed abruptly by a slight decrease of pressure/power

2. Changing growth temperature

Laser microscope image of the surface

Lower step bunching due lower N₂ addition (2 ppm) Good morphology

Confocal scan of the cross-section

LT layer 220-285 NV/µm³ HT layer 50-140 NV/µm³

Larger amounts of NVs at low temperature (X2 to X5 contrast)

Reduce thickness by reducing growth time

DIDE

= PARIS 13

2. Changing growth temperature

The thinnest line

Thickness down to about 300 nm (perhaps diffraction limited)

DIDEROT

MARIS 13

DIDERO

PARIS 13

Step 1

Observation of pits array on the diamond surface

Step 2

Create in-situ NV center during PACVD diamond growth

- Addition of nitrogen during growth

is promoted in the <111> directions

- Choice of conditions for which growth

T= 1050°C 1% CH₄ 200mbar, 3kW 1ppm N₂

A. Tallaire et al., DRM 41 (2014) p34

--- PARIS 1

Etching pattern — Local growth — PL/CL analysis

Overgrowth on holes

Overgrowth on micro-pilars

Possibility to create spatially localized NV centres by direct CVD growth

DIDEROT

ARIS 13

iii. Bringing NVs close to the surface

Low energy implantation \rightarrow accurate positionning but low yield and sensitive to surface defects

Overgrowing with a thin CVD layer → improvement of NV properties *Staudacher et al. APL101, 212401-212404 (2012).*

Need to find the right overgrowth conditions → preserve etching pattern while keeping high quality/purity

Stabilize NV⁻ charge state

ີ M. Lesikືet al. physica status solidi (a), 213 (2016) 2788-2788.

CONCLUSIONS

NV centres in diamond : a robust qubit system

- High magnetic sensitivity
- Nanoscale sensors @RT
- Bright single photon source

PACVD technique : a key enabling technology

- Unrivalled purity (isotopic control)
- High flexibility (multilayer, thin/thick films)
- In situ doping of NVs and other defects...

Challenges lying ahead

- Growing layers with heavy NV doping (1ppm?) and preferential orientation
- Thin « delta-doped » layers by CVD or well controlled patterns
- Find alternative defects to NVs (SiV and others...)
- Integrate diamond into other platforms

Quantera Microsens

http://www.labex-seam.fr/

LSPM-CNRS Université Paris 13 99 Av J. B Clément 93430 Villetaneuse, France

www.lspm.cnrs.fr

Special thanks to colleagues and collaborators:

UNIVERSITÉ **PAR**

LSPM:

<u>O. Brinza</u>, F. Bénédic, A. Gicquel, R. Issaoui, <u>V. Mille</u>, <u>A. Tallaire</u>, A. Valentin, A. Tardieu

ENS-Cachan, Laboratoire Aimé Cotton: M. Lesik, J.F. Roch, Loic Rondin

Laboratoire Charles Coulomb: A. Dréau, V. Jacques

Basel University: P. Maletinsky, M. Ganzhorn, E. Neu

Thales TRT: T. Debuisschert, L. Mayer

Leipzig University: S. Pezzagna, J. Meijer

Thank you for your attention