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Elasto-capillarity

Deformation of soft solids by capillary forces



Elasto-capillarity

Deformation of soft solids by capillary forces

Thin structures (plates, roads)

Antkowiak et al (2011)

Pineirua et al (2013) Hure and Audoly (2013)

o
O

O
Duprat et al (2012) Holmes et al (2016)




Elasto-capillarity

Deformation of soft solids by capillary forces

Thin structures (plates, roads) Low shear modulus

(a) undeformed
(v=0

deformed

Antkowiak et al (2011) b
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The elastowetting problem
Liquid drops (surface tension y) on

soft deformable solids What is the shape of the ridge &(x) ?
(elastic modulus p)

500 pym
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Formation of a ridge
beneath the contact line
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The elastowetting problem
Liquid drops (surface tension y) on

soft deformable solids What is the shape of the ridge &(x) ?
(elastic modulus p)

500 ym Not a recent question

First mentioned by Bikerman in 1957
and observed by dipping a gelatin prism in a mercury drop

Involved in some industrial applications

Dew collection, micro- and nano-devices fabrication,

* coatings

Formation of a ridge
beneath the contact line A simple but fundamental problem

Direct realization of the Flamant-Boussinesq problem
(Green function for many linear problems of contact
and fluid-structure interactions)

Rich physics

Not really understood until quite recently
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The elastowetting problem
Liquid drops (surface tension y) on

soft deformable solids A conceptual difficulty:
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Dimensional analysis Linear elasticity

Line force at the
free surface of a half-space

500 pym

ridge height: {(0) ~ y/p ridge height: {(0) = o
~| pm on quartz
* ~ 100 nm on rubber Boussinesq (1892), Flamant (1892)
. . ~ 10 pm on soft gels
Formation of a ridge
beneath the contact line &

A regularization mechanism is needed

= non-linearities

- plasticity

- finite width of contact line
- surface tension of the solid Long et al (1996)
- other?

Shanahan & de Gennes
(1987)




The elastowetting problem

Liquid drops (surface tension y) on

soft deformable solids
(elastic modulus p)

500 pym
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Formation of a ridge
beneath the contact line

A conceptual difficulty:
(which does not exist for thin structures)

4 "

Dimensional analysis Linear elasticity

Line force at the
free surface of a half-space

ridge height: {(0) ~ y/p ridge height: {(0) = o

~| pm on quartz
~ 100 nm on rubber Boussinesq (1892), Flamant (1892)

~ |0 ym on soft gels

A regularization mechanism is needed

= non-linearities

- plasticity

- finite width of contact line
- surface tension of the solid Long et al (1996)

- other? #

Experimental data at small scales (< | ym) are needed

Shanahan & de Gennes
(1987)



Pioneering experimental results

Confocal imaging
Style et al (2013)
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Pioneering experimental results

Confocal imaging
Style et al (2013)

X-ray imaging

Park et al (2014)
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Linear theory of elastowetting

The surface tension of
the solid ysis the relevant

regularization mechanism

Solve a linear elastic problem:

Force balance and incompressibility:

Constitutive model:

o= p(Vu+ (Vu)') —pI

Boundary conditions:

on=t+yn(V-n)



Linear theory of elastowetting

The surface tension of
the solid ysis the relevant

regularization mechanism

Solve a linear elastic problem:

Force balance and incompressibility:

Constitutive model:

o = w(Vu+ (Vu)') - pI

Boundary conditions:

on=t+vn(V - -n)

A single 2D vertical contact line:

Y
A

T Jia o 2pk 4 ysk?

elasticity = surface tension
at

lengthscale £s = ys/(2p)



Linear theory of elastowetting

y o0 dkcoskﬁ
C@—ﬂfw T

The solution can be written as:

E(x) = y/p f(x/&5)



Dimensionless surface deformation ¢ (x)H
y

Linear theory of elastowetting

y o0 dkcoskﬁ
<<f”>—%/w A

The solution can be written as:

E(x) = y/p f(x/&5)

Distance from contact line x//
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Elasticity | Capillarity |  Elasticity
dominates | dominates | dominates
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The divergent displacement field
is regularized by the surface tension of
the soft solid.

/ 0\

At short distance At large distance
from the tip (<< &),  from the tip (>> &),
capillarity dominates elasticity dominates



Linear theory of elastowetting

At the tip of the ridge:

Vertical force balance at the tip:

)/=2)/s*es

Neumann construction at the tip!

0:=C(0) = v/(27s) « Liquid-like behavior »

0 =7 - ylys

The opening angle O of the ridge
is independent of elasticity !



Comparison with static experiments

A drop of radius R resting on a soft
substrate with finite thickness H:

Ridge dimensions decrease with decreasing
thickness H and droplet radius R
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But the linear theory has strong limitations...

Only macroscopic contact angle
a = r/2

No predictions for
the general case ysL # ysv



But the linear theory has strong limitations...

Only macroscopic contact angle Only small deformations
a = 7/2 7I(2ys) << |

No predictions for BUT experimentally:
the general case ysL # ysv £'(0) = 05 = y/(2ys) ~ 0.6-0.8



Failure of the linear theory at large deformations

Xu et al (Sept 2017)

Concentric cylinder chamber
\

Use a syringe pump
to pull the vaccum
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Failure of the linear theory at large deformations

Xu et al (Sept 2017)

Concentric cylinder chamber
\

Use a syringe purhp ol
to pull the vaccum
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Strain € (%)

According to the linear theory

¥s depends on the deformation

Very strong Shuttleworth effect !



Failure of the linear theory at large deformations

Xu et al (Sept 2017)
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Failure of the linear theory at large deformations

Xu et al (Sept 2017)
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Memory effects in static elastowetting

Trace left on PDMS after receding a water droplet

Resting time ~ 30 min
Drop diameter ~ 5 mm

PDMS thickness ~ 100 ym
Shear modulus ~ | kPa
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Memory effects in static elastowetting

Resting time ~ 30 min Resting time ~ 2 min

A t=20s D t

= 20s

B t=300s E t =300s

Drop diameter ~ 5 mm
PDMS thickness ~ 100 ym
Shear modulus ~ | kPa

t =4800s t =4800s

C

A time-dependent process
that depends on the
wetting history

0.4 0.5um



Remnant traces can trap the triple line
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Hysteresis increases from ~5° to ~ 14° on
PDMS when the drop is left at rest for 30
minutes on PDMS

Time-dependent hysteresis was also
observed previously on elastomers
Extrand and Kumagai (1996)




Viscoelastic effects in elastowetting

Sliding of liquid drops on soft deformable solids n, =9 Lm h,= 270 um

Speed X10

a speed X10

|

gravity
water drop sliding on

a tilted glass slide
coated with a layer of PDMS

X = 49° « .

\/Fih

Vstiging = 0.6 mm/s Vstiging = 0.04mm/s

Sliding velocity on PDMS much smaller
than on bare glass (~ cm/s)

v

Additional dissipation mechanism: viscoelastic braking

Carré et al (1996), Carré et al (2001), Long et al (1996)

Very sensitive on substrate thickness !
Zhao et al (PNAS, 2018)



Purpose of the POLYWET Project

investigate theoretically and numerically
the elastowetting problem

~ ™~

for arbitrary liquid/solid couples on complex materials
YsL F Ysv poro-visco-elastic
in the nonlinear range




Nonlinear effects in elastowetting

Large deformations of a pre-stretched

Neo-Hookean material
with constant surface energy:

A :Elastic
ayer
Reference
configuration
R =(R, 2

Biaxial
prestretching

Prestretched
configuration
r=(,z)

= (AR, Z/A?)
Drop
deposition

Current
configuration
r=(2

= (r+u(r,z’), z’+u(r',z’)

%

Elastic energy density:

Wa(F) = £ {Te(FF") -3}

Surface energy density:

Ws = Vs

Total energy:

W= [ W.,(F)dV, + / W,da

oB

l l

3D integral over the
reference volume

Bo

2D integral over
the deformed area



Nonlinear effects in elastowetting

Approximation of the elastowetting problem as two solids in contact:

Solid | element size at
spherical cap of radius: R the contact line

surface energy: y \ ~ |Onm
elastic modulus: yj = mPa

w! = / WL(F)AVY + Wlda!
B! oBI

Solid |l

circular layer of thickness:AH/
surface energy: ys

elastic modulus: yi = kPa

Wi = / WH (F)av! + / wilda!!
Bél oBlI

Numerical minimization of the total energy W/{ 1 /!
is performed by a Finite Element Method under FreeFem++

de Pascalis et al (2018)
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Dimensionless surface deformation {(r’) /Y,
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Results from the numerical simulations

Without prestretch (A= 1) C With prestretch (A =1.5)

o
)

T T T T T 0_3 T T T T T T T T T
Nonlinear simulations L Nonlinear simulations
: ---------- Incremental theory 3 Incremental theory
0.2
0.1+
L O 0 e sasszzzroooe -
. | . . . | . . . | . . . | . . . | . — 0.1 . | . . . | . . . | . . . | . . . | .
-4 -2 0 2 4 -4 -2 0 2 4
Dimensionless distance from contact line r’/.fZS Dimensionless distance from contact line r’/!lS

Drop radius R: [.3 mm
Elastic layer thickness H: 50 ym
Shear modulus p: 1.6 kPa

Solid surface energy ys: 30mN/m
Liquid surface energy y: 40mN/m



Comparison between linear and nonlinear theories

180 |
- v/2y=0.075 1
' —=0.15 ‘
5 MJN303 -
Y 140
(@)
C
©
(@)]
) . k= ,
Linear Neumann construction: c 120
o
O
— *
y=27s O; 100 |
EACA _ _
9 =TT - ]//}/s A _— — > Nonlinear simulations |
10 11 12 13 14 15

Prestretch A



Comparison between linear and nonlinear theories

Opening angle 6(°)

B Good agreement between
- | | | simulations and experiments
140 - |
120 | [ [ ﬁ l
w ] |
l No Shuttleworth effect
-. Nonlinear simulations in SOft elaStOmerS '
80 _ Analytics |
1 Experiments Style et al BUT
6O L . »
100 105 110 115 120 1.25 Nonlinearities
Prestretch A are important !




Shear stress 1>

at the surface

Bulk
shear stress

Opening angle 6(°)

Origin of this nonlinear behavior ?

120 ¢

100 -

(0]
o
T T

60 L

140 +

Nonlinear simulations

Analytics

{ Experiments Style et al

Prestretch A

Elastic force acting at the tip

f¥ —lim | T -vdl

€—>O F(—:

!

£ o< =y (A = 1/A%) (7 — 6)

Purely topological force

£~ 2T

Analogous to the Peach-Koehler force
acting on a dislocation !




Non elastic behaviors in elastowetting

Drop resting time before removal= 30 min Drop resting time before removal= 2 min

D t=20s

A t=20s
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The poro-elasto-wetting theory works
well for PDMS

(but more experimental data are needed)



Conclusions

We have developed a powerful numerical tool
to investigate the nonlinear elastowetting
problem

!

Non trivial behaviors at large
deformations (y/2ys > 1)

The elastocapillary ridge behave as a
topological defect (a disclination)
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