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the same dimensions and shear moduli: the agar gel was
significantly more deformed than the polyacrylamid gel.
This can be explained by the fact that the agar gel is
deformed beyond its elastic limit (15%) in the neighbor-
hood of sharp edges; there, the strain concentrates and has
been argued to exceed 100% [2]. Therefore, we used
polyacrylamid gels to study the deformation of sharp
edges, as it has a very large elastic limit (! 500%).

Experiments are carried out for different sizes of the
initial cross section (a0 ¼ 3 to 6 mm) and for various
values for the shear modulus (! ¼ 35, 60, 88, and
125 Pa). A longitudinal contraction was again observed.
However, the most striking effect is that the initially square
cross sections get rounded by surface tension; see Fig. 2(b).
The rounding of an elastic wedge by surface tension has
been simulated in earlier work [2], which focused on the
neighborhood of the tip. The stress is large there, making
the neo-Hookean law unreliable and the results of the
simulation sensitive to the mesh (having tried to reproduce
the simulation, we suspect that the finite tip curvature
reported in Ref. [2] is due to the finite mesh size). This
may explain why the quantitative predictions of this simu-
lation have not been confirmed in experiments so far. We
consider a global measure of the rounding of the cross
sections instead, namely, the difference !A between the
area of the deformed cross sections and the area b2 of the
smallest square enclosing it, as sketched in Fig. 2(a). When
the relative difference !A=b2 is plotted as a function of
the dimensionless surface stress "" ¼ "=a0! ¼ ‘=a0, as in
Fig. 2(c), experimental points are found to collapse on a
master curve. The rounding effect is more pronounced as

the ratio "" ¼ ‘=a0 is smaller. Transferring the gel from oil
into water, thereby suppressing the surface tension, we
recover the original square cross sections: the deformation
of the gel is elastic and reversible, and is driven by surface
tension.
For square cross sections, the minimization of the en-

ergy (1) defines a nonlinear elasticity problem that has no
analytical solutions. We carried out numerical simulations
of a neo-Hookean solid deformed by surface tension, using
the finite-element method (FEM) [20]. Assuming reflec-
tional symmetry, we considered a domain of size a0=2#
a0=2# L=2 and implemented the corresponding symmet-
ric boundary conditions. An incompressible neo-Hookean
model was used, including the effect of the surface energy.
We adopted a set of units such that a0 ¼ 1and ! ¼ 1and
varied the dimensionless surface tension "". The dimen-
sionless measure of rounding !A=b2 was implemented
numerically as described earlier. The agreement between
simulation [solid curve in Fig. 2(c)] and experiments is
very good in the entire range of values of "" accessible in
the experiments. Note that deformations are large: the
rounding parameter !A=b2 varies nonlinearly with sur-
face tension, both in the simulation and in the experiments.
A detailed comparison of the shapes of the lateral bounda-
ries yields an excellent agreement, too [compare the solid
red and dotted light blue curves in Fig. 2(b)]. To the best of
our knowledge, these comparisons are the first quantitative
test of the rounding of elastic solids by surface tension
without any adjustable parameter.
We now consider the even less symmetric case of a

prism whose base is an isosceles triangle: this leads to an
entirely different type of deformation. We analyze the case
of an infinitely long triangular prism subjected to small
surface stress first: according to the theory of linear elas-
ticity, the stress can be analyzed in the undeformed con-
figuration. The surface tension is uniformly distributed
along the triangular boundary; its component parallel to
the axis of the prism is equivalent to a pointlike force
applied at the centroid G of this boundary—G is called
the Spieker center of the triangle; see Fig. 3(a). According
to the theory of thin elastic rods, stretching and bending
arise from the resultant force and moment of the applied
load with respect to the centroid H of a cross section,
respectively. In an isosceles but nonequilateral triangle,
this point is distinct from the Spieker center G. As a result,
the force equivalent to the surface tension, which is applied
at G, induces both a compressive resultant force and a
bending moment. The compressive force induces a con-
traction effect similar to that discussed earlier for circular
cross sections. The bending effect is novel, however, and
leads to large and easily measurable displacements.
Calculating the position of the points G and H and using
the linear beam theory, one finds the curvature # of the
centerline as a function of the height hof the cross section
and of the apex angle $ as
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FIG. 2 (color online). Rounding of the edges of an initially
square based prism made of polyacrylamid gel, immersed in
silicone oil. (a) The amount of rounding is measured based on
the surface area !A defined in the text (yellow region).
(b) Experimental shape of the cross section (solid red curve)
for a shear modulus ! ¼ 35 Pa, surface stress " ¼ 42:6 mN=m,
and initial edge length a0 ¼ 5 mm, and comparison to the
simulation ( "" ¼ 0:26, light blue dots). (c) The dimensionless
measure of rounding !A=a2 in the experiments is plotted as a
function of the dimensionless surface stress "" for various initial
cross-sectional widths a0 and shear moduli !, and compared to
simulations (solid line).
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Pioneering experimental results

Confocal imaging
Style et al (2013)
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FIG. 1. Surface profiles of a 50µm thick silicone gel substrate beneath partially-wetting droplets of glycerol with, from left to

right, radii of 26.8, 74.5, 176.7 and 225.5 µm. The dashed line through z = 0 corresponds to the initial surface profile before

droplet deposition.

there is good resolution of the surface profile at the tip
of the wetting ridge.

Droplet size changes the qualitative form of the sub-
strate deformation, as shown in Figure 1. For small
droplets, the Laplace pressure is large, leading to a sub-
stantial dimple under the drop [17]. As the droplet size
increases, the pressure decreases and the dimple dimin-
ishes until the ridge is approximately symmetric [16, 20].
Despite the strong variations in substrate profile with R,
a robust feature is the locally-triangular shape of the sur-
face at the contact line. We shall refer to this shape as a
cusp.

The cusp shape appears to be universal for a given liq-
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FIG. 2. Universal deformation near the contact line. (a) 72

profiles of glycerol droplets with radii ranging between 20 �
2000µm on di↵erent substrate thicknesses, shifted and rotated

so that the cusp regions align. The di↵erent colors represent

di↵erent substrate thicknesses, as marked in the figure. (b)

A close-up of the cusp region in (a), with the dashed line

showing the extracted cusp shape at the tip. (c) Close-up of

the aligned cusp regions for 14 fluorinated-oil droplets with

radii between 140-270µm, with the dashed line showing the

extracted cusp shape.

uid/substrate pair. Figures 2(a,b) show the surface pro-
files for 72 glycerol droplets of radii between 20�2000µm
on 4 di↵erent substrate thicknesses (h =14, 20, 30 and
50 µm). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counter-
clockwise by an angle  so that the line of symmetry of
the near-tip region is vertical. Away from the tip, there
are substantial di↵erences in profile shape. However, as
seen in Figure 2(b), all the data collapses into a sharp tri-
angular cusp angle of (93.4±1)� in a region within about
3µm either side of the cusp. Figure 2(c) shows a similar
collapse of data for 14 fluorinated oil droplets with radii
between 140� 270µm on a 23µm thick substrate. Again
the data collapses to a cusp at the contact line, this time
of angle (149.0 ± 2)�. All individual droplet profiles are
provided in the supplemental material [21].

While the cusp shape is universal, the cusp orientation
and peak height depend on the droplet size, as shown in
Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
the height of the wetting ridge as a function of droplet
radius. For large droplets, this height approaches a con-
stant value that depends upon the thickness of the sub-
strate. For smaller droplets, with R/h . 2, the height ap-
pears to be independent of substrate thickness, depend-
ing only on R. The cusp shape, orientation and height
now help to reveal the physical processes at work at the
three-phase contact line.

The cusp shape seen in our experiments is strikingly
similar to the behavior of a three phase contact line be-
tween liquids, where contact-line geometry is entirely de-
termined by force balance between the three surface ten-
sions [1]. We recently argued theoretically that the shape
of a solid substrate near the tip of a wetting ridge is sim-
ilarly determined by interfacial tensions, independent of
bulk elasticity [22]. Briefly, this is because for surface per-
turbations of wavenumber k, the elastic restoring force
⇠ Ek while the capillary restoring force ⇠ ⌥k

2. These
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Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
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files for 72 glycerol droplets of radii between 20�2000µm
on 4 di↵erent substrate thicknesses (h =14, 20, 30 and
50 µm). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counter-
clockwise by an angle  so that the line of symmetry of
the near-tip region is vertical. Away from the tip, there
are substantial di↵erences in profile shape. However, as
seen in Figure 2(b), all the data collapses into a sharp tri-
angular cusp angle of (93.4±1)� in a region within about
3µm either side of the cusp. Figure 2(c) shows a similar
collapse of data for 14 fluorinated oil droplets with radii
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the data collapses to a cusp at the contact line, this time
of angle (149.0 ± 2)�. All individual droplet profiles are
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While the cusp shape is universal, the cusp orientation
and peak height depend on the droplet size, as shown in
Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
the height of the wetting ridge as a function of droplet
radius. For large droplets, this height approaches a con-
stant value that depends upon the thickness of the sub-
strate. For smaller droplets, with R/h . 2, the height ap-
pears to be independent of substrate thickness, depend-
ing only on R. The cusp shape, orientation and height
now help to reveal the physical processes at work at the
three-phase contact line.

The cusp shape seen in our experiments is strikingly
similar to the behavior of a three phase contact line be-
tween liquids, where contact-line geometry is entirely de-
termined by force balance between the three surface ten-
sions [1]. We recently argued theoretically that the shape
of a solid substrate near the tip of a wetting ridge is sim-
ilarly determined by interfacial tensions, independent of
bulk elasticity [22]. Briefly, this is because for surface per-
turbations of wavenumber k, the elastic restoring force
⇠ Ek while the capillary restoring force ⇠ ⌥k
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the values that minimized the azimuthal variation of the
surface profile [22]. Example azimuthally collapsed pro-
files of glycerol droplets on a 50 !m thick substrate are
shown in Fig. 1. Owing to the robust radial symmetry, there
is good resolution of the surface profile at the tip of the
wetting ridge.

Droplet size changes the qualitative form of the substrate
deformation, as shown in Fig. 1. For small droplets, the
Laplace pressure is large, leading to a substantial dimple
under the drop [19]. As the droplet size increases,
the pressure decreases and the dimple diminishes until the
ridge is approximately symmetric [18,23]. Despite the strong
variations in substrate profile with R, a robust feature is the
locally triangular shape of the surface at the contact line.
We shall refer to this shape as a cusp.

The cusp shape appears to be universal for a given liquid-
substrate pair. Figures 2(a) and 2(b) show the surface profiles

for 72 glycerol droplets of radii between 20 and 2000 !m on
four different substrate thicknesses (h ¼ 14, 20, 30, and
50 !m). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counterclock-
wise by an angle c so that the line of symmetry of the near-
tip region is vertical. Away from the tip, there are substantial
differences in profile shape. However, as seen in Fig. 2(b),
all the data collapse into a sharp triangular cusp angle of
ð93:4 # 1Þ% in a region within about 3 !m either side of the
cusp. Figure 2(c) shows a similar collapse of data for
14 fluorinated-oil droplets with radii between 140 and
270 !m on a 23 !m thick substrate. Again, the data
collapse to a cusp at the contact line, this time of angle
ð149:0 # 2Þ%. All individual droplet profiles are provided
in the Supplemental Material [22].
While the cusp shape is universal, the cusp orientation

and peak height depend on the droplet size, as shown in
Figs. 3(a) and 3(b). For large droplets on all substrate
thicknesses, the cusp points directly upwards (c & 0).
As the drop size reduces towards a length scale of order
100 !m, the cusp starts to rotate towards the droplet
center, as can be seen in Figs. 1 and 3(a). Figure 3(b)
shows the height of the wetting ridge as a function of
droplet radius. For large droplets, this height approaches
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FIG. 1 (color online). Surface profiles of a 50 !m thick
silicone gel substrate beneath partially wetting droplets of
glycerol with, from left to right, radii of 26.8, 74.5, 176.7, and
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initial surface profile before droplet deposition.
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FIG. 2 (color online). Universal deformation near the contact
line. (a) 72 profiles of glycerol droplets with radii ranging
between 20 and 2000 !m on different substrate thicknesses,
shifted and rotated so that the cusp regions align. The different
shades represent different substrate thicknesses, as marked in the
figure. (b) A close-up of the cusp region in (a), with the dashed
line showing the extracted cusp shape at the tip. (c) Close-up of
the aligned cusp regions for 14 fluorinated-oil droplets with radii
between 140 and 270 !m, with the dashed line showing the
extracted cusp shape.
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FIG. 3 (color online). (a) Change in cusp orientation c and
macroscopic contact angle " as a function of glycerol droplet
size and substrate thickness. Crosses and diamonds indicate c
and ", respectively. The inset shows how c is defined. (b) Height
of wetting ridge as a function of glycerol drop size. The marker
shapes and shades corresponding to substrate thicknesses are the
same for both figures. Dashed curves are theoretical predictions
based on measured values of the interfacial tensions, as de-
scribed in the text.

PRL 110, 066103 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

066103-2

θ

The ridge opening angle θ is independent of:
drop radius: R

substrate thickness: H



Pioneering experimental results

Confocal imaging
Style et al (2013)
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there is good resolution of the surface profile at the tip
of the wetting ridge.

Droplet size changes the qualitative form of the sub-
strate deformation, as shown in Figure 1. For small
droplets, the Laplace pressure is large, leading to a sub-
stantial dimple under the drop [17]. As the droplet size
increases, the pressure decreases and the dimple dimin-
ishes until the ridge is approximately symmetric [16, 20].
Despite the strong variations in substrate profile with R,
a robust feature is the locally-triangular shape of the sur-
face at the contact line. We shall refer to this shape as a
cusp.

The cusp shape appears to be universal for a given liq-
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FIG. 2. Universal deformation near the contact line. (a) 72

profiles of glycerol droplets with radii ranging between 20 �
2000µm on di↵erent substrate thicknesses, shifted and rotated

so that the cusp regions align. The di↵erent colors represent

di↵erent substrate thicknesses, as marked in the figure. (b)

A close-up of the cusp region in (a), with the dashed line

showing the extracted cusp shape at the tip. (c) Close-up of

the aligned cusp regions for 14 fluorinated-oil droplets with

radii between 140-270µm, with the dashed line showing the

extracted cusp shape.

uid/substrate pair. Figures 2(a,b) show the surface pro-
files for 72 glycerol droplets of radii between 20�2000µm
on 4 di↵erent substrate thicknesses (h =14, 20, 30 and
50 µm). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counter-
clockwise by an angle  so that the line of symmetry of
the near-tip region is vertical. Away from the tip, there
are substantial di↵erences in profile shape. However, as
seen in Figure 2(b), all the data collapses into a sharp tri-
angular cusp angle of (93.4±1)� in a region within about
3µm either side of the cusp. Figure 2(c) shows a similar
collapse of data for 14 fluorinated oil droplets with radii
between 140� 270µm on a 23µm thick substrate. Again
the data collapses to a cusp at the contact line, this time
of angle (149.0 ± 2)�. All individual droplet profiles are
provided in the supplemental material [21].

While the cusp shape is universal, the cusp orientation
and peak height depend on the droplet size, as shown in
Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
the height of the wetting ridge as a function of droplet
radius. For large droplets, this height approaches a con-
stant value that depends upon the thickness of the sub-
strate. For smaller droplets, with R/h . 2, the height ap-
pears to be independent of substrate thickness, depend-
ing only on R. The cusp shape, orientation and height
now help to reveal the physical processes at work at the
three-phase contact line.

The cusp shape seen in our experiments is strikingly
similar to the behavior of a three phase contact line be-
tween liquids, where contact-line geometry is entirely de-
termined by force balance between the three surface ten-
sions [1]. We recently argued theoretically that the shape
of a solid substrate near the tip of a wetting ridge is sim-
ilarly determined by interfacial tensions, independent of
bulk elasticity [22]. Briefly, this is because for surface per-
turbations of wavenumber k, the elastic restoring force
⇠ Ek while the capillary restoring force ⇠ ⌥k

2. These
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droplets, the Laplace pressure is large, leading to a sub-
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increases, the pressure decreases and the dimple dimin-
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on 4 di↵erent substrate thicknesses (h =14, 20, 30 and
50 µm). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counter-
clockwise by an angle  so that the line of symmetry of
the near-tip region is vertical. Away from the tip, there
are substantial di↵erences in profile shape. However, as
seen in Figure 2(b), all the data collapses into a sharp tri-
angular cusp angle of (93.4±1)� in a region within about
3µm either side of the cusp. Figure 2(c) shows a similar
collapse of data for 14 fluorinated oil droplets with radii
between 140� 270µm on a 23µm thick substrate. Again
the data collapses to a cusp at the contact line, this time
of angle (149.0 ± 2)�. All individual droplet profiles are
provided in the supplemental material [21].

While the cusp shape is universal, the cusp orientation
and peak height depend on the droplet size, as shown in
Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
the height of the wetting ridge as a function of droplet
radius. For large droplets, this height approaches a con-
stant value that depends upon the thickness of the sub-
strate. For smaller droplets, with R/h . 2, the height ap-
pears to be independent of substrate thickness, depend-
ing only on R. The cusp shape, orientation and height
now help to reveal the physical processes at work at the
three-phase contact line.

The cusp shape seen in our experiments is strikingly
similar to the behavior of a three phase contact line be-
tween liquids, where contact-line geometry is entirely de-
termined by force balance between the three surface ten-
sions [1]. We recently argued theoretically that the shape
of a solid substrate near the tip of a wetting ridge is sim-
ilarly determined by interfacial tensions, independent of
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there is good resolution of the surface profile at the tip
of the wetting ridge.

Droplet size changes the qualitative form of the sub-
strate deformation, as shown in Figure 1. For small
droplets, the Laplace pressure is large, leading to a sub-
stantial dimple under the drop [17]. As the droplet size
increases, the pressure decreases and the dimple dimin-
ishes until the ridge is approximately symmetric [16, 20].
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uid/substrate pair. Figures 2(a,b) show the surface pro-
files for 72 glycerol droplets of radii between 20�2000µm
on 4 di↵erent substrate thicknesses (h =14, 20, 30 and
50 µm). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counter-
clockwise by an angle  so that the line of symmetry of
the near-tip region is vertical. Away from the tip, there
are substantial di↵erences in profile shape. However, as
seen in Figure 2(b), all the data collapses into a sharp tri-
angular cusp angle of (93.4±1)� in a region within about
3µm either side of the cusp. Figure 2(c) shows a similar
collapse of data for 14 fluorinated oil droplets with radii
between 140� 270µm on a 23µm thick substrate. Again
the data collapses to a cusp at the contact line, this time
of angle (149.0 ± 2)�. All individual droplet profiles are
provided in the supplemental material [21].

While the cusp shape is universal, the cusp orientation
and peak height depend on the droplet size, as shown in
Figure 3(a,b). For large droplets on all substrate thick-
nesses, the cusp points directly upwards ( ⇡ 0). As the
drop size reduces towards a length scale of order 100µm,
the cusp starts to rotate towards the droplet center, as
can be seen in Figures 1 and 3(a). Figure 3(b) shows
the height of the wetting ridge as a function of droplet
radius. For large droplets, this height approaches a con-
stant value that depends upon the thickness of the sub-
strate. For smaller droplets, with R/h . 2, the height ap-
pears to be independent of substrate thickness, depend-
ing only on R. The cusp shape, orientation and height
now help to reveal the physical processes at work at the
three-phase contact line.

The cusp shape seen in our experiments is strikingly
similar to the behavior of a three phase contact line be-
tween liquids, where contact-line geometry is entirely de-
termined by force balance between the three surface ten-
sions [1]. We recently argued theoretically that the shape
of a solid substrate near the tip of a wetting ridge is sim-
ilarly determined by interfacial tensions, independent of
bulk elasticity [22]. Briefly, this is because for surface per-
turbations of wavenumber k, the elastic restoring force
⇠ Ek while the capillary restoring force ⇠ ⌥k

2. These

the values that minimized the azimuthal variation of the
surface profile [22]. Example azimuthally collapsed pro-
files of glycerol droplets on a 50 !m thick substrate are
shown in Fig. 1. Owing to the robust radial symmetry, there
is good resolution of the surface profile at the tip of the
wetting ridge.

Droplet size changes the qualitative form of the substrate
deformation, as shown in Fig. 1. For small droplets, the
Laplace pressure is large, leading to a substantial dimple
under the drop [19]. As the droplet size increases,
the pressure decreases and the dimple diminishes until the
ridge is approximately symmetric [18,23]. Despite the strong
variations in substrate profile with R, a robust feature is the
locally triangular shape of the surface at the contact line.
We shall refer to this shape as a cusp.

The cusp shape appears to be universal for a given liquid-
substrate pair. Figures 2(a) and 2(b) show the surface profiles

for 72 glycerol droplets of radii between 20 and 2000 !m on
four different substrate thicknesses (h ¼ 14, 20, 30, and
50 !m). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counterclock-
wise by an angle c so that the line of symmetry of the near-
tip region is vertical. Away from the tip, there are substantial
differences in profile shape. However, as seen in Fig. 2(b),
all the data collapse into a sharp triangular cusp angle of
ð93:4 # 1Þ% in a region within about 3 !m either side of the
cusp. Figure 2(c) shows a similar collapse of data for
14 fluorinated-oil droplets with radii between 140 and
270 !m on a 23 !m thick substrate. Again, the data
collapse to a cusp at the contact line, this time of angle
ð149:0 # 2Þ%. All individual droplet profiles are provided
in the Supplemental Material [22].
While the cusp shape is universal, the cusp orientation

and peak height depend on the droplet size, as shown in
Figs. 3(a) and 3(b). For large droplets on all substrate
thicknesses, the cusp points directly upwards (c & 0).
As the drop size reduces towards a length scale of order
100 !m, the cusp starts to rotate towards the droplet
center, as can be seen in Figs. 1 and 3(a). Figure 3(b)
shows the height of the wetting ridge as a function of
droplet radius. For large droplets, this height approaches
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FIG. 1 (color online). Surface profiles of a 50 !m thick
silicone gel substrate beneath partially wetting droplets of
glycerol with, from left to right, radii of 26.8, 74.5, 176.7, and
225:5 !m. The dashed line through z¼ 0 corresponds to the
initial surface profile before droplet deposition.
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FIG. 2 (color online). Universal deformation near the contact
line. (a) 72 profiles of glycerol droplets with radii ranging
between 20 and 2000 !m on different substrate thicknesses,
shifted and rotated so that the cusp regions align. The different
shades represent different substrate thicknesses, as marked in the
figure. (b) A close-up of the cusp region in (a), with the dashed
line showing the extracted cusp shape at the tip. (c) Close-up of
the aligned cusp regions for 14 fluorinated-oil droplets with radii
between 140 and 270 !m, with the dashed line showing the
extracted cusp shape.
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FIG. 3 (color online). (a) Change in cusp orientation c and
macroscopic contact angle " as a function of glycerol droplet
size and substrate thickness. Crosses and diamonds indicate c
and ", respectively. The inset shows how c is defined. (b) Height
of wetting ridge as a function of glycerol drop size. The marker
shapes and shades corresponding to substrate thicknesses are the
same for both figures. Dashed curves are theoretical predictions
based on measured values of the interfacial tensions, as de-
scribed in the text.
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Linear theory of elastowetting

Solve a linear elastic problem:
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Appendix D. The linear elastic solution260

The deformation of the elastic solid is described by the axisymmetric displacement field u,

u = ur(r, z)er + uz(r, z)ez, (D.1)

and the strain tensor ϵ is defined as

ϵ =
1

2

(

∇u+ (∇u)T
)

, (D.2)

while the linear stress stress relationships gives the stress tensor σ as

σ =
E

1 + ν

(

ϵ+
ν

1− 2ν
Tr(ϵ)I

)

(D.3)

where E is the Young’s modulus and ν is the Poisson ratio. The mechanical equilibrium in the bulk of the soft
elastic layer is described by the Navier equations:

∇ · σ = 0 (D.4)

or, using the displacement field u by
(1− 2ν)△u+∇(∇ · u) = 0. (D.5)

This set of equations is completed by the condition of stress continuity at the free boundary z = h,

σn = t+ γsn(∇ · n) (D.6)

where n and t are the unit normal vector to the surface and traction forces exerted at the substrate boundary,
respectively. γsl is the surface energy of the solid-liquid interface and γsg is the surface energy of the solid-gas
interface. In addition, the soft elastic layer is bounded at the bottom, i.e at z = 0,

u(r, 0) = 0. (D.7)

Let us consider the problem of a static purely normal force t = Fz(r)ez applied at the free boundary of the
elastic solid. The axisymmetric compressible Navier equations are simplified by introducing a potential function
known as the Galerkin vector G,

G = ξ(r, z)ez (D.8)

defined as

u =
1 + ν

E
(2(1− ν)△G−∇(∇ ·G)) . (D.9)

Substituting (D.9) into (D.5), we obtain the familiar biharmonic equation of linear elasticity

△2ξ = 0. (D.10)

In the axisymmetric geometry, it is useful to defined the Fourier-Hankel transform with respect to r by

ξ̂(s, z) =

∫ ∞

0
rξ(r, z)J0(sr)dr (D.11)

and its inverse transform by

ξ(r, z) =

∫ ∞

0
sξ̂(s, z)J0(sr)ds. (D.12)
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A single 2D vertical contact line:

Solve a linear elastic problem:

and the second variation of Is is,
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The deformation of the elastic solid is described by the axisymmetric displacement field u,

u = ur(r, z)er + uz(r, z)ez, (D.1)

and the strain tensor ϵ is defined as

ϵ =
1

2

(

∇u+ (∇u)T
)

, (D.2)

while the linear stress stress relationships gives the stress tensor σ as

σ =
E

1 + ν

(

ϵ+
ν

1− 2ν
Tr(ϵ)I

)

(D.3)

where E is the Young’s modulus and ν is the Poisson ratio. The mechanical equilibrium in the bulk of the soft
elastic layer is described by the Navier equations:

∇ · σ = 0 (D.4)

or, using the displacement field u by
(1− 2ν)△u+∇(∇ · u) = 0. (D.5)

This set of equations is completed by the condition of stress continuity at the free boundary z = h,

σn = t+ γsn(∇ · n) (D.6)

where n and t are the unit normal vector to the surface and traction forces exerted at the substrate boundary,
respectively. γsl is the surface energy of the solid-liquid interface and γsg is the surface energy of the solid-gas
interface. In addition, the soft elastic layer is bounded at the bottom, i.e at z = 0,

u(r, 0) = 0. (D.7)

Let us consider the problem of a static purely normal force t = Fz(r)ez applied at the free boundary of the
elastic solid. The axisymmetric compressible Navier equations are simplified by introducing a potential function
known as the Galerkin vector G,

G = ξ(r, z)ez (D.8)

defined as

u =
1 + ν

E
(2(1− ν)△G−∇(∇ ·G)) . (D.9)

Substituting (D.9) into (D.5), we obtain the familiar biharmonic equation of linear elasticity

△2ξ = 0. (D.10)

In the axisymmetric geometry, it is useful to defined the Fourier-Hankel transform with respect to r by

ξ̂(s, z) =

∫ ∞

0
rξ(r, z)J0(sr)dr (D.11)

and its inverse transform by

ξ(r, z) =

∫ ∞

0
sξ̂(s, z)J0(sr)ds. (D.12)
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Fig. 2 Time dependent deformation of the poroelastic substrate following the deposition of a large drop (R/`s = 100) and a poroelastic Poisson

ratio of 3/10. A: 3D view of a half space deformed by the drop showing the ridge at the triple line. The drop is not drawn for clarity. B:

Dimensionless profile of the interface z (r, t)/`s at t = 0+ (orange curve) and t = • (green curve). The initial position of the interface before

deposition at t = 0� is indicated by a black dotted curve. C: Time evolution the height of the ridge (solid blue curve), scaled by its instantaneous

value h(0+). The instantaneous response is indicated by an orange dashed line while the final equilibrium value is indicated by a green

dashed line. The asymptotic law h(t)�h(0+) µ `s log(tD?/`2
s
) is shown by a red dotted curve. Shown in inset is the scaled poroelastic response

(h(t)�h(0+))/h(0+) after deposition with a log scale for the time coordinate, clearly showing the overshoot behavior discussed in the text. D-G:

Evolution of the dimensionless solvent concentration field (c� c0)W before the deposition of the drop at t = 0� (D), right after deposition at

t = 0+ (E), at t = `2
s
/D

?
(F) and finally at t = • (G). H-K: Evolution of the dimensionless chemical potential field (µ �µ0)GW before the deposition

of the drop at t = 0� (D), right after deposition at t = 0+ (E), at t = `2
s
/D

?
(F) and finally at t = • (G). In D-K, the concentration and chemical

potential fields are plotted in regions centered at R/`s = 100 and have width and height of 2`s and`s, respectively.

is mostly due the evolution of the corresponding lenghtscales
1/R ⌧ s ⌧ 1/`s and we will check later that this approxima-
tion is self-consistent. In this limit, the Laplace transform of the
increase of the ridge height h(t)� h(0+) is then approximately
`s

R 1/`s

1/R
s/{w(s2�(w/D

?)(1�n)/(1�2n))}ds. This simpler expres-
sion can then be integrated along s and the resulting expression
can finally be inverted in the time domain analytically to yield the
scaling

h(t)�h(0+) µ `s log(tD?/`2
s ) (38)

As seen in Fig.2-C, this expression fits rather well the numeri-
cal result between the two intermediate timescales `2

s/D
? ⌧ t ⌧

R
2/D

?, as expected from our assumptions. Beside providing a

reasonable approximation to the evolution of the ridge height,
it also shows that the relevant timescale for the evolution of the
ridge created by large drops is `2

s/D
?. Beneath the drop, the depth

of the valley is, at leading order, independent of the drop size
and increases over time, from z (r = 0, t = 0+) ⇡ � `s

2
g sinq

gs

until it

reaches z (r = 0, t = •) ⇡ �(1�n)`s

g sinq
gs

. As seen in Fig.2-B, the
formula above are a good approximation for the case R/`s = 100.
Beneath the drop, the chemical potential increases right after the
deposition. We find that, for large drops, the chemical potential
beneath the drop at t = 0+ is given by:

µ(r = 0,z = 0, t = 0+)⇡ µ0 +2
g sinqW

R
(39)
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Figure 2. Schematic of the problem. A linearly elastic half space is subjected to a line force f at the origin of the free surface.
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Up to a constant and far from the cut-off length (x≪ !), the solution above can be simplified
as follows:

ζ (x) =
fy

2πµ

{
−log

|x|
!

+ cos
|x|
ls

Ci
|x|
ls

+ γ + sin
|x|
ls

(
Si

|x|
ls

−π

2

)}
≡

fy
2πµ

H(x) (3.11)

and

ux(x, y= 0) = fx
2πµ

{
−log

|x|
!

}
≡ fx

2πµ
G(x), (3.12)

where γ ≈0.577 is the Euler–Mascheroni constant. Note that the normal (respectively, horizontal)
component of the displacement field depend only on the normal (respectively, horizontal)
component of the applied surface force. As a consequence, only the deflection ζ of the surface
depends on the surface tension of the solid. The absence of coupling between horizontal
displacement and vertical loading is a characteristic feature of a linear incompressible half-space.
In the limit ls → 0, we recover the solution of the Flamant–Cerruti problem [29,30]. Note that
these expressions diverge both at large and small x. The divergence of the displacement field
at large distance from the contact line is solely a consequence of the two-dimensional character
of the problem (similar to the logarithmic divergence of the flow field past a cylinder in two-
dimensional hydrodynamics) and can be regularized, for example, by formulating the problem
in three dimensions, such as in [31] for the case of a concentrated normal force. The divergence of
the displacement near x= 0, on the other hand, follows from the localized nature of the applied
force. While this solution might be a reasonable description at some distance (to be specified later)
from the contact line, this description must break down at smaller scales. At the lengthscale of the
gel correlation length (typically 1 nm), the structure becomes heterogeneous and the continuous
model indeed does not hold. Irregularities may also arise from the roughness of the free surface
at a larger scale, as shown in figure 3. Because of these defects, real contact lines have some
‘thickness’ in the sense that the triple line is pinned to the defects and oscillates within a narrow
band of width 2a. Before applying this regularization at small scales, let us first note that the Green
function above can also be reasonably approximated by another simpler function.

(c) A simplified Green function
In the limit ls → 0 (with x≫ ls and x≪ !), the solution ζ (x) above and its first derivative
θ (x) = ζ ′(x) has the following asymptotic form (Shanahan limit [12]):

ζ (x) = −
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γ + log

|x|
!

)
, θ (x) = −

fy
2πµ

1
x

and ux(x, y= 0) = − fx
2πµ

log
|x|
!

, (3.13)

t = 𝛾 𝛿(x) uy
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𝛇(x) = 𝛾/µ f(x/ℓs)

The solution can be written as:

⇣(r, t) =
�

�s
`s

Z 1

0
ds

e
!t
J0(sr)

⇣
RJ0(sR)� 2J1(sR)

s

⌘

!(1 + s`s) + s2D? 1�2⌫
1�⌫

⇣
s
p
D?p

s2D?+!
� 1

⌘ (1)

⇣(r) =
�

2µ

Z 1

0
ds

J0(sr)RJ0(sR)

1 + s`s
(2)

⇣(x) =
�

2⇡µ

Z 1

1/�0
dk

cos k x
`s

k + k2
(3)

⇣(x) =
�

2⇡µ

Z 1

1/�
dk

cos kx

k + �s

2µk
2

(4)

⇣(x) =
1

⇡

Z 1

1/�
dk

� cos kx

2µk + �sk
2

(5)

⇣(r) =
�

2µ

Z 1

0
ds

J0(sr)
⇣
RJ0(sR)� 2J1(sR)

s

⌘

f(Hs) + s
�s

2µ

(6)

⇣(r) =
�

2µ

Z 1

0
ds

J0(sr)

f(Hs) + s
�s

2µ

⇢
RJ0(sR)� 2J1(sR)

s

�
(7)

r · u = 0 (8)

� = µ(ru+ (ru)T )� pI (9)

Wel(F ) =
µ

2

n
Tr(FF T )� 3

o
(10)

Ws = �s (11)

W =

Z

B0

Wel(F )dV0 +

Z

@B
Wsda (12)

WI =

Z

BI
0

WI
el(F )dV I

0 +

Z

@BI

WI
sda

I (13)

WII =

Z

BII
0

WII
el (F )dV II

0 +

Z

@BII

WII
s daII (14)

WI +WII (15)

~x = ~X + ~u( ~X) (16)

F =
@~x

@ ~X

(17)

1



Linear theory of elastowetting

ζ [�]

������� �	�
��	�

���

���

���

���

-�� -� � � ��

�
��
��
��
��
��
��

�	

��
�

��
��

�
��
��
�

ζ(
�)
μ γ

	
����� ���� ������ �
�� �/ℓ�

Capillarity
dominates 

Elasticity
dominates 

Elasticity
dominates 

ℓs

{
The divergent displacement field 

is regularized by the surface tension of 
the soft solid.

At short distance 
from the tip (<< ℓs),
capillarity dominates

At large distance 
from the tip (>> ℓs),
elasticity dominates
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At the tip of the ridge:

θs = 𝛇’(0) = 𝛾/(2𝛾s)

EG

2 µm

𝜸

𝜸s 𝜸s

θs

θ

𝛾 = 2 𝛾s * θs

Neumann construction at the tip!

« Liquid-like behavior »

θ = 𝜋 - 𝛾/𝛾s

The opening angle θ of the ridge 
is independent of elasticity !

Vertical force balance at the tip:
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Ridge dimensions decrease with decreasing 
thickness H and droplet radius R

Style et al (2013)

A drop of radius R resting on a soft 
substrate with finite thickness H:

tion, the solution x (r, t) to this arbitrary time dependent forcing
can be written as in term of the step response z (r, t) given in equa-
tion (30):

x (r, t) = F(0+)z (r, t)+
Z

t

0
z (r,t)∂F(t � t)

∂ t
dt (33)

This general solution will be investigated at the end of the next
section but we first turn to the analysis of the solution (30) in the
case of a hemispherical droplet on a poroelastic substrate.

4 Results for hemispherical droplets

Drop

Gel

R θ

er

ez
ζ(r,t)

Fig. 1 Schematic representation of the problem and notations. A

liquid hemispherical droplet with radius R and contact angle q is de-

posited at time t = 0 at the surface of a poroelastic substrate. The

black dashed line indicates the position of the free surface before the

deposition of the liquid drop. Using cylindrico-polar coordinates (r,z)
in the frame (~er,~ez), the deflection of the free surface is given by the

function z (r, t).

We now consider the specific case where the surface force dis-
tribution is due to a hemispherical droplet with radius R and con-
tact angle q . In this situation, the surface force distribution is
fz(r) = g sinqd (r�R)�2 g sinq

R
H(R�r). The first term is due to the

liquid/air surface tension that pull on the substrate at the contact
line while the second term is due to the Laplace pressure inside
the spherical droplet that push the substrate. The zeroth-order
Hankel transform of fz(r) is:

f̂z(s) = g sinq
✓

RJ0(sR)� 2J1(sR)

s

◆
(34)

With this choice of surface force distribution, the interface pro-
file z (r, t) is given by:

z (r, t)= g sinq
gs

`s

Z x+i•

x�i•
dw

Z •

0
ds

e
wt

J0(sr)
⇣

RJ0(sR)� 2J1(sR)
s

⌘

w(1+ s`s)+ s2D? 1�2n
1�n

⇣
s

p
D?p

s2D?+w �1
⌘

(35)
Let us note here that, in general, the wet and dry parts of the

solid are likely to have different surface energies. However, tak-
ing this effect into account leads to a discontinuous boundary
value problem that can be further transformed into coupled in-
tegral equations which cannot be solved analytically. This prob-
lem therefore remains, as mentioned in the introduction, an open
question. Because we wish to focus in this work on the effect of

poroelasticity in elastowetting, we will assume here that the sur-
face energies of the dry and wet parts of the solids are equal and
given by gs. We now turn to the detailed analysis of equation (35)
for specific cases of broad physical interest.

4.1 Large drops

The first limiting case of interest is the case of large drops, i.e
R � `s. We plot in Fig.2 the time evolution of the surface defor-
mation for a large drop (R/`s = 100), as well as the associated
concentration and chemical potential fields. As seen in Fig.2-B
the lower part of the drop sinks over time inside the soft sub-
strate. The ridge height h(t) = z (R, t) on the other hand, increases
in a non-trivial fashion after the initial deposition and its evolu-
tion is plotted in Fig.2-C. Before the deposition, the interface is
flat h(0�) = 0. Right after the deposition, the height suddenly
jumps to a height h(0+). Asymptotically, for large drops, the
height h(0+) of the ridge is given by:

h(0+)⇡ g sinq
gs

`s

Ge �4+ log 8R

`s

p
(36)

where Ge is the Euler-Mascheroni constant. Following this initial
jump, the height of the ridge increases as the solvent migrates to-
ward the ridge where the gel is under tension. In the same time,
the ridge moves radially toward the interior of the drop up to a
distance of `s(g sinq(1�2n))/(4gs) in the final state. Because this
time evolution is due to the diffusive migration of the solvent on a
distance of order R, the stationary state is reached on a timescale
of ⇠ R

2/D
?, as can be seen in the inset of Fig.2-C. Quite surpris-

ingly for such a damped system, the ridge height first increases
above its final stationary value h(•) before relaxing toward h(•)

which is given asymptotically by:

h(•)⇡ g sinq
gs

`s

2(1�n)
⇣

Ge �4+ log 4R

`s(1�n)

⌘

p
(37)

This non-trivial overshooting behavior can be understood by
analyzing the two forces that are applied to the surface of the
poroelastic substrate. While both forces imply a migration of sol-
vent over a lengthscale R, the Laplace pressure in the drop acts
as a distributed pressure on the surface that pushes fluid only in
the outward radial direction. On the other hand, the traction due
to the air/liquid interface is a force localized at the triple line and
draws fluid from both the inside and the outside of the drop. As
a consequence the increase in height due to this traction relaxes
twice as fast as the decrease in height due to the Laplace pres-
sure. The combination of these two forces with slightly different
timescales therefore produces the overshoot behavior seen in the
inset of Fig.2-C.

Because the inverse Hankel-Laplace cannot be evaluated an-
alytically, it is not possible to provide a simple expression (in
the time domain) for the time evolution of the ridge height h(t).
However, some crude approximations can be performed in order
to gain further insight on the behavior of h(t). In the limit of
large drop, we focus on the evolution of h(t) between the two
intermediate timescales `2

s/D
? ⌧ t ⌧ R

2/D
? and we will make

the crude approximation that the evolution of h(t) in this regime

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–12 | 5
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the values that minimized the azimuthal variation of the
surface profile [22]. Example azimuthally collapsed pro-
files of glycerol droplets on a 50 !m thick substrate are
shown in Fig. 1. Owing to the robust radial symmetry, there
is good resolution of the surface profile at the tip of the
wetting ridge.

Droplet size changes the qualitative form of the substrate
deformation, as shown in Fig. 1. For small droplets, the
Laplace pressure is large, leading to a substantial dimple
under the drop [19]. As the droplet size increases,
the pressure decreases and the dimple diminishes until the
ridge is approximately symmetric [18,23]. Despite the strong
variations in substrate profile with R, a robust feature is the
locally triangular shape of the surface at the contact line.
We shall refer to this shape as a cusp.

The cusp shape appears to be universal for a given liquid-
substrate pair. Figures 2(a) and 2(b) show the surface profiles

for 72 glycerol droplets of radii between 20 and 2000 !m on
four different substrate thicknesses (h ¼ 14, 20, 30, and
50 !m). Each profile is translated so that the tip of the
wetting ridge is at the origin, and then rotated counterclock-
wise by an angle c so that the line of symmetry of the near-
tip region is vertical. Away from the tip, there are substantial
differences in profile shape. However, as seen in Fig. 2(b),
all the data collapse into a sharp triangular cusp angle of
ð93:4 # 1Þ% in a region within about 3 !m either side of the
cusp. Figure 2(c) shows a similar collapse of data for
14 fluorinated-oil droplets with radii between 140 and
270 !m on a 23 !m thick substrate. Again, the data
collapse to a cusp at the contact line, this time of angle
ð149:0 # 2Þ%. All individual droplet profiles are provided
in the Supplemental Material [22].
While the cusp shape is universal, the cusp orientation

and peak height depend on the droplet size, as shown in
Figs. 3(a) and 3(b). For large droplets on all substrate
thicknesses, the cusp points directly upwards (c & 0).
As the drop size reduces towards a length scale of order
100 !m, the cusp starts to rotate towards the droplet
center, as can be seen in Figs. 1 and 3(a). Figure 3(b)
shows the height of the wetting ridge as a function of
droplet radius. For large droplets, this height approaches
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FIG. 1 (color online). Surface profiles of a 50 !m thick
silicone gel substrate beneath partially wetting droplets of
glycerol with, from left to right, radii of 26.8, 74.5, 176.7, and
225:5 !m. The dashed line through z¼ 0 corresponds to the
initial surface profile before droplet deposition.
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93°
149°

FIG. 2 (color online). Universal deformation near the contact
line. (a) 72 profiles of glycerol droplets with radii ranging
between 20 and 2000 !m on different substrate thicknesses,
shifted and rotated so that the cusp regions align. The different
shades represent different substrate thicknesses, as marked in the
figure. (b) A close-up of the cusp region in (a), with the dashed
line showing the extracted cusp shape at the tip. (c) Close-up of
the aligned cusp regions for 14 fluorinated-oil droplets with radii
between 140 and 270 !m, with the dashed line showing the
extracted cusp shape.
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FIG. 3 (color online). (a) Change in cusp orientation c and
macroscopic contact angle " as a function of glycerol droplet
size and substrate thickness. Crosses and diamonds indicate c
and ", respectively. The inset shows how c is defined. (b) Height
of wetting ridge as a function of glycerol drop size. The marker
shapes and shades corresponding to substrate thicknesses are the
same for both figures. Dashed curves are theoretical predictions
based on measured values of the interfacial tensions, as de-
scribed in the text.
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But the linear theory has strong limitations…

No predictions for
the general case 𝛾SL ≠ 𝛾SV

Only macroscopic contact angle
𝛼 = 𝜋/2

𝛼𝜸

𝜸sv
𝜸sl



But the linear theory has strong limitations…

No predictions for
the general case 𝛾SL ≠ 𝛾SV

Only macroscopic contact angle
𝛼 = 𝜋/2

𝛼𝜸

𝜸sv
𝜸sl

EG

2 µm

𝜸

𝜸s 𝜸s

θs=𝛾/(2𝛾s)

BUT experimentally: 
 𝛇’(0) = θs  = 𝛾/(2𝛾s) ~ 0.6-0.8

Only small deformations
𝛾/(2𝛾s) << 1



Figure 2: Schematic illustration of the bi-axial stretcher. The part of
the membrane over the inner cylinder is where we perform our experimental
observations. Droplets and fluorescent beads attached to this region of the
membrane are imaged from below using an inverted confocal microscope. The
precise bi-axial strain, ✏1 exerted on the membrane is calculated by tracking
fluorescent beads attached to the membrane

2

Xu et al (Sept 2017)

Failure of the linear theory at large deformations



Figure 2: Schematic illustration of the bi-axial stretcher. The part of
the membrane over the inner cylinder is where we perform our experimental
observations. Droplets and fluorescent beads attached to this region of the
membrane are imaged from below using an inverted confocal microscope. The
precise bi-axial strain, ✏1 exerted on the membrane is calculated by tracking
fluorescent beads attached to the membrane

2

Xu et al (Sept 2017)

Failure of the linear theory at large deformations

According to the linear theory 
𝛾s  depends on the deformation

Very strong Shuttleworth effect !
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FIG. 1. (a) Contact angle measurements of glycerol on un-
strained (left) and 6%-strained (right) polycarbonate glass.
The left panel shows a typical circular cap fit (red solid line)
to the droplet profile. (b) Contact angle measurements of
glycerol on unstrained (left) and 100%-strained (right) Elas-
tollan elastomer. The images are rescaled so that all contact
radii appear equal, while preserving the aspect ratio. Since
the profiles are spherical caps, the height of the cap is thus
indicative of the contact angle (see the black dotted lines).
Anything below the horizontal white dashed line is a reflec-
tion o↵ the substrate. All scale bars correspond to 50 µm.

materials do exhibit strain dependent surface energies.
As seen in Fig. 1(a), a droplet placed on a glassy sub-
strate strained by only 6% exhibits a significant change
in contact angle. In contrast, we provide strong evidence
that interfaces involving an elastomer together with a
liquid or a vapour have surface energies which are un-
changed by strain. In Fig. 1(b), an elastomeric substrate
strained by 100% shows no measurable change in ✓Y. As
we will show, ✓Y is independent of strain for all tested
combinations of elastomer and liquid.

In our experiment, polymeric glassy and elastomeric
films are strained (Fig. 2) and then transferred onto a sil-
icon wafer. We then place sub-millimetric liquid droplets
on those strained films. The droplets are observed to be
completely circular when viewed from above. We perform
contact angle measurements by viewing the droplets from
the side under an optical microscope and fitting their
profiles to circular caps, an example of which is shown in
the left panel of Fig. 1(a). We note that Young-Dupré’s
law only holds for droplets which are much larger than
the elastocapillary length of the system [17]. Therefore,
we work exclusively in the regime where the droplet size
much exceeds this length scale. All contact angle mea-
surements are performed in air and at room temperature.

In the first part of this study, we perform our measure-
ments on polymeric glasses. Since we want to avoid any
plastic deformation of the samples, we choose polysulfone
(PSf) and polycarbonate (PC) which have large elonga-

l0 = 4.5 mmz

x
y

FIG. 2. Schematic of the sample holder used to apply precise
strains to the films. The sample holder consists of two alu-
minum blocks separated by a fixed initial distance l0. Two
pieces of silicon which have been coated with the same poly-
meric material as is to be strained, are a�xed to the alu-
minum blocks. The films to be strained are placed such that
they bridge the gap between the sample holder blocks. The
strong adhesion between the film and the coated silicon pieces
keeps the film in place and prevents delamination. The two
blocks are then precisely separated by a distance �l along the
x-direction, using a motorized translation stage at constant
speed, which creates a strain ✏ = �l/l0 in the film.

tions at yield: up to 6% and 8% respectively for bulk
samples [24]. For the thin film samples and low strain
rates employed, we find that both glasses can be strained
up to 7-8% without observing crazing. Thus, we vary
the strains in the range of 0-8% and discard any sam-
ple where crazing is observed. The error in the strain is
estimated to be ±1%. Contact angle measurements are
performed with two standard test liquids: diiodomethane
(DIM), a symmetric, non-polar molecule with �lv = 50.8
mJ/m2 [25], and glycerol, a highly polar molecule with
�lv = 63 mJ/m2 [26].

In Figs. 3(a) and 3(b), we plot �sv � �sl, obtained via
Young-Dupré’s law, as a function of strain for PSf and
PC respectively, with DIM as the test liquid (circles). In
both these cases, the contact angle increases with strain,
causing �sv � �sl to decrease. This result demonstrates,
for the first time, the existence of strain dependent sur-
face energies for interfaces involving a polymeric glass.

Using Eq. 1, the surface stress di↵erence at zero strain

⌥(0)
sv �⌥(0)

sl , where the (0) superscript will henceforth refer
to the unstrained (✏ = 0) case, can be determined by fit-
ting a line to each of the data sets (circles) in Figs. 3(a)
and 3(b). In doing so, the surface stress di↵erence at
zero strain is found to be respectively 11 mJ/m2 and
17 mJ/m2 smaller than the surface energy di↵erence at

zero strain �(0)
sv ��(0)

sl , for PSf and PC respectively. Simi-
larly, the dependence of �sv��sl upon strain for PSf and
PC with glycerol as the test liquid is shown (circles) in
Fig. 3(c) and 3(d). A clear strain dependence is again ob-
served. Surprisingly, �sv � �sl increases with strain with
this polar liquid, contrary to the results with DIM. Due
to curvature in these data, they are not well described
by a linear relationship, but fitting a line to the first few
data points allows us to determine approximate values

for ⌥(0)
sv � ⌥(0)

sl . The magnitude of the e↵ect is much

larger with glycerol as the test liquid, as ⌥(0)
sv � ⌥(0)

sl is
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strained (left) and 6%-strained (right) polycarbonate glass.
The left panel shows a typical circular cap fit (red solid line)
to the droplet profile. (b) Contact angle measurements of
glycerol on unstrained (left) and 100%-strained (right) Elas-
tollan elastomer. The images are rescaled so that all contact
radii appear equal, while preserving the aspect ratio. Since
the profiles are spherical caps, the height of the cap is thus
indicative of the contact angle (see the black dotted lines).
Anything below the horizontal white dashed line is a reflec-
tion o↵ the substrate. All scale bars correspond to 50 µm.

materials do exhibit strain dependent surface energies.
As seen in Fig. 1(a), a droplet placed on a glassy sub-
strate strained by only 6% exhibits a significant change
in contact angle. In contrast, we provide strong evidence
that interfaces involving an elastomer together with a
liquid or a vapour have surface energies which are un-
changed by strain. In Fig. 1(b), an elastomeric substrate
strained by 100% shows no measurable change in ✓Y. As
we will show, ✓Y is independent of strain for all tested
combinations of elastomer and liquid.

In our experiment, polymeric glassy and elastomeric
films are strained (Fig. 2) and then transferred onto a sil-
icon wafer. We then place sub-millimetric liquid droplets
on those strained films. The droplets are observed to be
completely circular when viewed from above. We perform
contact angle measurements by viewing the droplets from
the side under an optical microscope and fitting their
profiles to circular caps, an example of which is shown in
the left panel of Fig. 1(a). We note that Young-Dupré’s
law only holds for droplets which are much larger than
the elastocapillary length of the system [17]. Therefore,
we work exclusively in the regime where the droplet size
much exceeds this length scale. All contact angle mea-
surements are performed in air and at room temperature.

In the first part of this study, we perform our measure-
ments on polymeric glasses. Since we want to avoid any
plastic deformation of the samples, we choose polysulfone
(PSf) and polycarbonate (PC) which have large elonga-

l0 = 4.5 mmz

x
y

FIG. 2. Schematic of the sample holder used to apply precise
strains to the films. The sample holder consists of two alu-
minum blocks separated by a fixed initial distance l0. Two
pieces of silicon which have been coated with the same poly-
meric material as is to be strained, are a�xed to the alu-
minum blocks. The films to be strained are placed such that
they bridge the gap between the sample holder blocks. The
strong adhesion between the film and the coated silicon pieces
keeps the film in place and prevents delamination. The two
blocks are then precisely separated by a distance �l along the
x-direction, using a motorized translation stage at constant
speed, which creates a strain ✏ = �l/l0 in the film.

tions at yield: up to 6% and 8% respectively for bulk
samples [24]. For the thin film samples and low strain
rates employed, we find that both glasses can be strained
up to 7-8% without observing crazing. Thus, we vary
the strains in the range of 0-8% and discard any sam-
ple where crazing is observed. The error in the strain is
estimated to be ±1%. Contact angle measurements are
performed with two standard test liquids: diiodomethane
(DIM), a symmetric, non-polar molecule with �lv = 50.8
mJ/m2 [25], and glycerol, a highly polar molecule with
�lv = 63 mJ/m2 [26].

In Figs. 3(a) and 3(b), we plot �sv � �sl, obtained via
Young-Dupré’s law, as a function of strain for PSf and
PC respectively, with DIM as the test liquid (circles). In
both these cases, the contact angle increases with strain,
causing �sv � �sl to decrease. This result demonstrates,
for the first time, the existence of strain dependent sur-
face energies for interfaces involving a polymeric glass.

Using Eq. 1, the surface stress di↵erence at zero strain

⌥(0)
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sl , where the (0) superscript will henceforth refer
to the unstrained (✏ = 0) case, can be determined by fit-
ting a line to each of the data sets (circles) in Figs. 3(a)
and 3(b). In doing so, the surface stress di↵erence at
zero strain is found to be respectively 11 mJ/m2 and
17 mJ/m2 smaller than the surface energy di↵erence at

zero strain �(0)
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sl , for PSf and PC respectively. Simi-
larly, the dependence of �sv��sl upon strain for PSf and
PC with glycerol as the test liquid is shown (circles) in
Fig. 3(c) and 3(d). A clear strain dependence is again ob-
served. Surprisingly, �sv � �sl increases with strain with
this polar liquid, contrary to the results with DIM. Due
to curvature in these data, they are not well described
by a linear relationship, but fitting a line to the first few
data points allows us to determine approximate values
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erties (e.g. polarizability) other than ⇢s do not vary with
strain. In this approach, a positive strain ✏ can induce a
reduction in the density ⇢s, which causes a proportional
reduction in Wlvs, implying a reduction in �sv � �sl. In-
deed, the mass density of our films upon straining is given

by ⇢s = ⇢(0)s [1� (1� 2⌫)✏/k] in the limit of small strains,
where ⌫ is the Poisson ratio of the film, and where the
parameter k depends on details of the straining geome-
try but is expected to be unity when the strained solid
is completely unclamped at its sides in the y- and z-
directions (Fig. 2) but smaller than unity if the film is
fully clamped. The constant k is left as a free parame-
ter in this minimal approach. Therefore, for dispersive
interactions, we have a simple prediction for the strain
dependence of the surface energy di↵erence:

�sv��sl = �(0)
sv ��(0)

sl �
⇣
�(0)
sv � �(0)

sl + �lv
⌘ (1� 2⌫)

k
✏. (2)

Given that ⌫ = 0.37 for both PSf and PC [24], we can fit
Eq. 2 to our DIM/PSf and DIM/PC data leaving both

�(0)
sv ��(0)

sl and k free. The results are shown as solid lines
in Fig. 3(a) and Fig. 3(b). These fits describe the data

well, and from these we extract values of �(0)
sv ��(0)

sl which
are in agreement with those obtained from contact angle
measurements on unstrained films (see Fig. 3(a,b)), and
determine k to be 2.3 ± 0.5 and 1.4 ± 0.5 for DIM/PSf
and DIM/PC respectively. Though k is of order unity,
as expected, the minimal model is missing some impor-
tant ingredients. For instance, the polarizability of the
molecules in the solid may change with strain, or the
surface density may behave di↵erently under strain com-
pared to the bulk. The simple model we have proposed is
applicable to the dispersive interactions between a non-
polar liquid and a solid, but cannot be simply extended
to interactions involving permanent dipoles. Indeed, a
polar liquid like glycerol introduces an additional degree
of complexity in the interfacial interactions [3].

In the second part of this study, we perform con-
tact angle measurements upon various elastomers us-
ing several test liquids. We employ two physically
crosslinked elastomers: styrene-isoprene-styrene triblock
copolymer (SIS), and Elastollan which is a thermoplastic
polyurethane multiblock copolymer; as well as one chem-
ically crosslinked elastomer: polyvinyl siloxane (PVS).
We measure ✓Y for these three elastomers using glyc-
erol and DIM as the test liquids, with the exception of
SIS for which we replace DIM by polyethylene glycol
(PEG), since SIS is swollen by DIM. The results of the
contact angle measurements for all liquid/elastomer com-
binations are shown in Fig. 4, where we plot ✓Y � h✓Yi✏,
i.e. the deviation of the equilibrium contact angle from
its mean value taken over all measured strains, as a
function of strain. As seen in this plot, all contact an-
gles remain constant within ±1 � up to 100% strain.
These trends together with Young-Dupré’s law imply

glyc/SIS
PEG/SIS
glyc/Elastollan

DIM/Elastollan
glyc/PVS
DIM/PVS

0 20 40 60 80 100
−2

−1
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1

2

FIG. 4. Equilibrium contact angles relative to their average
over all strains as a function of strain, for three elastomers
using three di↵erent test liquids. Equilibrium contact angles
are compared to the average value over all strains because this
provides better statistics for the normalization compared to
plotting with respect to the value at ✏ = 0, in which case the
normalization is determined only by one data point in each
set and, as such, is more prone to error. Vertical error bars
represent standard errors in the measurement.

that d�sv

d✏ =
d�sl1
d✏ =

d�sl2
d✏ for all strains, where 1,2 in-

dicate the two di↵erent test liquids. However, there is no
physically sound reason to expect the solid-vapour sur-
face energy to change by a non-zero amount under strain
in exactly the same way as the solid-liquid surface energy,
for an arbitrary choice of test liquid. In fact, one might
expect the polarity of the liquid to play an important role.
Thus, a reasonable expectation is that d�sv
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d✏ = 0
for the interfaces involving the elastomers, which would

imply through Eq. 1 that ⌥sv = ⌥(0)
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sl , and thus no Shuttleworth e↵ect.
Since we have tested several elastomers (physically and
chemically crosslinked) and liquids (with varying polar-
ity), we conjecture that this suggested property is ap-
plicable to solid-fluid interfaces involving elastomers in
general. If correct, this may be understood in the follow-
ing simple way: elastomers are essentially incompressible
(⌫ ⇡ 0.5) liquids which are constrained by crosslinks on
length scales much larger than those relevant to inter-
molecular interactions. Thus – despite the strain – the
local molecular environment, density, and consequently
stress and energy near the interface remain mostly un-
changed.

Our study is motivated by the on-going debate on
whether or not surface stresses in elastomers are iden-
tical to surface energies [6, 15–23]. One set of experi-
ments measured the surface stresses of an interface in-
volving PVS by dipping a rod of this elastomer into an
ethanol bath and measuring the deformation of the rod
both above and beneath the liquid-air interface [15, 21].
In the aforementioned experiment, d�sl

d✏ � d�sv

d✏ = 43± 10
mN/m, in contradiction to our data which suggests
that d�sl

d✏ � d�sv

d✏ = 0 for all solid-fluid interfaces involv-

Figure 2: Schematic illustration of the bi-axial stretcher. The part of
the membrane over the inner cylinder is where we perform our experimental
observations. Droplets and fluorescent beads attached to this region of the
membrane are imaged from below using an inverted confocal microscope. The
precise bi-axial strain, ✏1 exerted on the membrane is calculated by tracking
fluorescent beads attached to the membrane
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FIG. 1. (a) Contact angle measurements of glycerol on un-
strained (left) and 6%-strained (right) polycarbonate glass.
The left panel shows a typical circular cap fit (red solid line)
to the droplet profile. (b) Contact angle measurements of
glycerol on unstrained (left) and 100%-strained (right) Elas-
tollan elastomer. The images are rescaled so that all contact
radii appear equal, while preserving the aspect ratio. Since
the profiles are spherical caps, the height of the cap is thus
indicative of the contact angle (see the black dotted lines).
Anything below the horizontal white dashed line is a reflec-
tion o↵ the substrate. All scale bars correspond to 50 µm.

materials do exhibit strain dependent surface energies.
As seen in Fig. 1(a), a droplet placed on a glassy sub-
strate strained by only 6% exhibits a significant change
in contact angle. In contrast, we provide strong evidence
that interfaces involving an elastomer together with a
liquid or a vapour have surface energies which are un-
changed by strain. In Fig. 1(b), an elastomeric substrate
strained by 100% shows no measurable change in ✓Y. As
we will show, ✓Y is independent of strain for all tested
combinations of elastomer and liquid.

In our experiment, polymeric glassy and elastomeric
films are strained (Fig. 2) and then transferred onto a sil-
icon wafer. We then place sub-millimetric liquid droplets
on those strained films. The droplets are observed to be
completely circular when viewed from above. We perform
contact angle measurements by viewing the droplets from
the side under an optical microscope and fitting their
profiles to circular caps, an example of which is shown in
the left panel of Fig. 1(a). We note that Young-Dupré’s
law only holds for droplets which are much larger than
the elastocapillary length of the system [17]. Therefore,
we work exclusively in the regime where the droplet size
much exceeds this length scale. All contact angle mea-
surements are performed in air and at room temperature.

In the first part of this study, we perform our measure-
ments on polymeric glasses. Since we want to avoid any
plastic deformation of the samples, we choose polysulfone
(PSf) and polycarbonate (PC) which have large elonga-

l0 = 4.5 mmz

x
y

FIG. 2. Schematic of the sample holder used to apply precise
strains to the films. The sample holder consists of two alu-
minum blocks separated by a fixed initial distance l0. Two
pieces of silicon which have been coated with the same poly-
meric material as is to be strained, are a�xed to the alu-
minum blocks. The films to be strained are placed such that
they bridge the gap between the sample holder blocks. The
strong adhesion between the film and the coated silicon pieces
keeps the film in place and prevents delamination. The two
blocks are then precisely separated by a distance �l along the
x-direction, using a motorized translation stage at constant
speed, which creates a strain ✏ = �l/l0 in the film.

tions at yield: up to 6% and 8% respectively for bulk
samples [24]. For the thin film samples and low strain
rates employed, we find that both glasses can be strained
up to 7-8% without observing crazing. Thus, we vary
the strains in the range of 0-8% and discard any sam-
ple where crazing is observed. The error in the strain is
estimated to be ±1%. Contact angle measurements are
performed with two standard test liquids: diiodomethane
(DIM), a symmetric, non-polar molecule with �lv = 50.8
mJ/m2 [25], and glycerol, a highly polar molecule with
�lv = 63 mJ/m2 [26].

In Figs. 3(a) and 3(b), we plot �sv � �sl, obtained via
Young-Dupré’s law, as a function of strain for PSf and
PC respectively, with DIM as the test liquid (circles). In
both these cases, the contact angle increases with strain,
causing �sv � �sl to decrease. This result demonstrates,
for the first time, the existence of strain dependent sur-
face energies for interfaces involving a polymeric glass.

Using Eq. 1, the surface stress di↵erence at zero strain

⌥(0)
sv �⌥(0)

sl , where the (0) superscript will henceforth refer
to the unstrained (✏ = 0) case, can be determined by fit-
ting a line to each of the data sets (circles) in Figs. 3(a)
and 3(b). In doing so, the surface stress di↵erence at
zero strain is found to be respectively 11 mJ/m2 and
17 mJ/m2 smaller than the surface energy di↵erence at

zero strain �(0)
sv ��(0)

sl , for PSf and PC respectively. Simi-
larly, the dependence of �sv��sl upon strain for PSf and
PC with glycerol as the test liquid is shown (circles) in
Fig. 3(c) and 3(d). A clear strain dependence is again ob-
served. Surprisingly, �sv � �sl increases with strain with
this polar liquid, contrary to the results with DIM. Due
to curvature in these data, they are not well described
by a linear relationship, but fitting a line to the first few
data points allows us to determine approximate values

for ⌥(0)
sv � ⌥(0)

sl . The magnitude of the e↵ect is much

larger with glycerol as the test liquid, as ⌥(0)
sv � ⌥(0)

sl is
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liquid or a vapour have surface energies which are un-
changed by strain. In Fig. 1(b), an elastomeric substrate
strained by 100% shows no measurable change in ✓Y. As
we will show, ✓Y is independent of strain for all tested
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on those strained films. The droplets are observed to be
completely circular when viewed from above. We perform
contact angle measurements by viewing the droplets from
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profiles to circular caps, an example of which is shown in
the left panel of Fig. 1(a). We note that Young-Dupré’s
law only holds for droplets which are much larger than
the elastocapillary length of the system [17]. Therefore,
we work exclusively in the regime where the droplet size
much exceeds this length scale. All contact angle mea-
surements are performed in air and at room temperature.

In the first part of this study, we perform our measure-
ments on polymeric glasses. Since we want to avoid any
plastic deformation of the samples, we choose polysulfone
(PSf) and polycarbonate (PC) which have large elonga-
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minum blocks separated by a fixed initial distance l0. Two
pieces of silicon which have been coated with the same poly-
meric material as is to be strained, are a�xed to the alu-
minum blocks. The films to be strained are placed such that
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blocks are then precisely separated by a distance �l along the
x-direction, using a motorized translation stage at constant
speed, which creates a strain ✏ = �l/l0 in the film.

tions at yield: up to 6% and 8% respectively for bulk
samples [24]. For the thin film samples and low strain
rates employed, we find that both glasses can be strained
up to 7-8% without observing crazing. Thus, we vary
the strains in the range of 0-8% and discard any sam-
ple where crazing is observed. The error in the strain is
estimated to be ±1%. Contact angle measurements are
performed with two standard test liquids: diiodomethane
(DIM), a symmetric, non-polar molecule with �lv = 50.8
mJ/m2 [25], and glycerol, a highly polar molecule with
�lv = 63 mJ/m2 [26].

In Figs. 3(a) and 3(b), we plot �sv � �sl, obtained via
Young-Dupré’s law, as a function of strain for PSf and
PC respectively, with DIM as the test liquid (circles). In
both these cases, the contact angle increases with strain,
causing �sv � �sl to decrease. This result demonstrates,
for the first time, the existence of strain dependent sur-
face energies for interfaces involving a polymeric glass.

Using Eq. 1, the surface stress di↵erence at zero strain
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to the unstrained (✏ = 0) case, can be determined by fit-
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zero strain is found to be respectively 11 mJ/m2 and
17 mJ/m2 smaller than the surface energy di↵erence at
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larly, the dependence of �sv��sl upon strain for PSf and
PC with glycerol as the test liquid is shown (circles) in
Fig. 3(c) and 3(d). A clear strain dependence is again ob-
served. Surprisingly, �sv � �sl increases with strain with
this polar liquid, contrary to the results with DIM. Due
to curvature in these data, they are not well described
by a linear relationship, but fitting a line to the first few
data points allows us to determine approximate values
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erties (e.g. polarizability) other than ⇢s do not vary with
strain. In this approach, a positive strain ✏ can induce a
reduction in the density ⇢s, which causes a proportional
reduction in Wlvs, implying a reduction in �sv � �sl. In-
deed, the mass density of our films upon straining is given

by ⇢s = ⇢(0)s [1� (1� 2⌫)✏/k] in the limit of small strains,
where ⌫ is the Poisson ratio of the film, and where the
parameter k depends on details of the straining geome-
try but is expected to be unity when the strained solid
is completely unclamped at its sides in the y- and z-
directions (Fig. 2) but smaller than unity if the film is
fully clamped. The constant k is left as a free parame-
ter in this minimal approach. Therefore, for dispersive
interactions, we have a simple prediction for the strain
dependence of the surface energy di↵erence:

�sv��sl = �(0)
sv ��(0)

sl �
⇣
�(0)
sv � �(0)

sl + �lv
⌘ (1� 2⌫)

k
✏. (2)

Given that ⌫ = 0.37 for both PSf and PC [24], we can fit
Eq. 2 to our DIM/PSf and DIM/PC data leaving both

�(0)
sv ��(0)

sl and k free. The results are shown as solid lines
in Fig. 3(a) and Fig. 3(b). These fits describe the data

well, and from these we extract values of �(0)
sv ��(0)

sl which
are in agreement with those obtained from contact angle
measurements on unstrained films (see Fig. 3(a,b)), and
determine k to be 2.3 ± 0.5 and 1.4 ± 0.5 for DIM/PSf
and DIM/PC respectively. Though k is of order unity,
as expected, the minimal model is missing some impor-
tant ingredients. For instance, the polarizability of the
molecules in the solid may change with strain, or the
surface density may behave di↵erently under strain com-
pared to the bulk. The simple model we have proposed is
applicable to the dispersive interactions between a non-
polar liquid and a solid, but cannot be simply extended
to interactions involving permanent dipoles. Indeed, a
polar liquid like glycerol introduces an additional degree
of complexity in the interfacial interactions [3].

In the second part of this study, we perform con-
tact angle measurements upon various elastomers us-
ing several test liquids. We employ two physically
crosslinked elastomers: styrene-isoprene-styrene triblock
copolymer (SIS), and Elastollan which is a thermoplastic
polyurethane multiblock copolymer; as well as one chem-
ically crosslinked elastomer: polyvinyl siloxane (PVS).
We measure ✓Y for these three elastomers using glyc-
erol and DIM as the test liquids, with the exception of
SIS for which we replace DIM by polyethylene glycol
(PEG), since SIS is swollen by DIM. The results of the
contact angle measurements for all liquid/elastomer com-
binations are shown in Fig. 4, where we plot ✓Y � h✓Yi✏,
i.e. the deviation of the equilibrium contact angle from
its mean value taken over all measured strains, as a
function of strain. As seen in this plot, all contact an-
gles remain constant within ±1 � up to 100% strain.
These trends together with Young-Dupré’s law imply
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FIG. 4. Equilibrium contact angles relative to their average
over all strains as a function of strain, for three elastomers
using three di↵erent test liquids. Equilibrium contact angles
are compared to the average value over all strains because this
provides better statistics for the normalization compared to
plotting with respect to the value at ✏ = 0, in which case the
normalization is determined only by one data point in each
set and, as such, is more prone to error. Vertical error bars
represent standard errors in the measurement.

that d�sv

d✏ =
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d✏ for all strains, where 1,2 in-

dicate the two di↵erent test liquids. However, there is no
physically sound reason to expect the solid-vapour sur-
face energy to change by a non-zero amount under strain
in exactly the same way as the solid-liquid surface energy,
for an arbitrary choice of test liquid. In fact, one might
expect the polarity of the liquid to play an important role.
Thus, a reasonable expectation is that d�sv

d✏ = d�sl

d✏ = 0
for the interfaces involving the elastomers, which would

imply through Eq. 1 that ⌥sv = ⌥(0)
sv = �sv = �(0)

sv and

⌥sl = ⌥(0)
sl = �sl = �(0)

sl , and thus no Shuttleworth e↵ect.
Since we have tested several elastomers (physically and
chemically crosslinked) and liquids (with varying polar-
ity), we conjecture that this suggested property is ap-
plicable to solid-fluid interfaces involving elastomers in
general. If correct, this may be understood in the follow-
ing simple way: elastomers are essentially incompressible
(⌫ ⇡ 0.5) liquids which are constrained by crosslinks on
length scales much larger than those relevant to inter-
molecular interactions. Thus – despite the strain – the
local molecular environment, density, and consequently
stress and energy near the interface remain mostly un-
changed.

Our study is motivated by the on-going debate on
whether or not surface stresses in elastomers are iden-
tical to surface energies [6, 15–23]. One set of experi-
ments measured the surface stresses of an interface in-
volving PVS by dipping a rod of this elastomer into an
ethanol bath and measuring the deformation of the rod
both above and beneath the liquid-air interface [15, 21].
In the aforementioned experiment, d�sl

d✏ � d�sv

d✏ = 43± 10
mN/m, in contradiction to our data which suggests
that d�sl

d✏ � d�sv

d✏ = 0 for all solid-fluid interfaces involv-
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Figure 2: Schematic illustration of the bi-axial stretcher. The part of
the membrane over the inner cylinder is where we perform our experimental
observations. Droplets and fluorescent beads attached to this region of the
membrane are imaged from below using an inverted confocal microscope. The
precise bi-axial strain, ✏1 exerted on the membrane is calculated by tracking
fluorescent beads attached to the membrane
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FIGURE 3.15: Trace left behind after receding a water droplet. The resting time of the droplet is 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 
The droplet diameter, soft PDMS layer thickness, and the shear storage modulus of PDMS gel are 4.97 𝑚𝑚, 

104 𝜇𝑚, and 1.2 𝑘𝑃𝑎, respectively. 

Dynamic pinning 

To strengthen our results on the pinning effect, an additional experiment focused on receding 
dynamics is performed:  a water drop is kept resting on a soft PDMS layer of 20 𝜇𝑚 thick and 
it is removed after 22 minutes. A trace, that is visible with the naked eye, is left behind as is 
similarly shown in Figure 3.15. Afterwards, another droplet of a bigger volume is deposited 
onto the same location of the previous one so that the new resting contact line overruns the trace 
left behind. And this new droplet is retracted back by the pump at fixed flow rate 10 𝜇𝐿/𝑚𝑖𝑛. 
The contact line dynamics is shown in Figure 3.10. In the early stage (< 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), the 
contact line propagates to the left smoothly and it is then pinned when it meets the trace at time 
𝑇 = 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. In the next 10.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the contact angle keeps dropping from 67.3° 
to 24.3° at 𝑉𝑑 = 0 𝜇𝑚/𝑠 . At 𝑇 =  129.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , contact line is released because of the 
strong capillary force (highly curved interface close to the contact line shown in the last picture 
from Figure 3.16(a)). This dynamic experiment hence provides another evidence that trace 
induced by the resting droplets on soft films can pin the contact line and hence modify the 
contact angle hysteresis. 

1 mm 

Resting time ~ 30 min
Drop diameter ~ 5 mm

PDMS thickness ~ 100 µm
Shear modulus ~ 1 kPa

Trace left on PDMS after receding a water droplet

Memory effects in static elastowetting
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.

6 Conflicts of interest
There are no conflicts of interest to declare.

References
1 Sokuler, M. et al. The softer the better: Fast condensation on

soft surfaces. Langmuir 26, 1544-1547 (2010).
2 Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A. and Quake,

S. R. Monolithic Microfabricated Valves and Pumps by Multi-
layer Soft Lithography. Science 288, 113-116 (2000).

3 Boland,T.,Xu,T.,Damon,B. and Cui,X. Application of inkjet
printing to tissue engineering. Biotechnol. J. 1, 910-917
(2006).

4 Chung, S. et al. Inkjet-printed stretchable silver electrode on
wave structured elastomeric substrate. Appl. Phys. Lett. 98,
2011-2014 (2011).

10 | 1–12+PVSOBM�/BNF�<ZFBS>�<WPM�>

Resting time ~ 2 min



 
73 Chapter 3 Statics: surface deformation and contact angle on elastic materials 

 
FIGURE 3.15: Trace left behind after receding a water droplet. The resting time of the droplet is 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 
The droplet diameter, soft PDMS layer thickness, and the shear storage modulus of PDMS gel are 4.97 𝑚𝑚, 

104 𝜇𝑚, and 1.2 𝑘𝑃𝑎, respectively. 

Dynamic pinning 

To strengthen our results on the pinning effect, an additional experiment focused on receding 
dynamics is performed:  a water drop is kept resting on a soft PDMS layer of 20 𝜇𝑚 thick and 
it is removed after 22 minutes. A trace, that is visible with the naked eye, is left behind as is 
similarly shown in Figure 3.15. Afterwards, another droplet of a bigger volume is deposited 
onto the same location of the previous one so that the new resting contact line overruns the trace 
left behind. And this new droplet is retracted back by the pump at fixed flow rate 10 𝜇𝐿/𝑚𝑖𝑛. 
The contact line dynamics is shown in Figure 3.10. In the early stage (< 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), the 
contact line propagates to the left smoothly and it is then pinned when it meets the trace at time 
𝑇 = 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. In the next 10.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the contact angle keeps dropping from 67.3° 
to 24.3° at 𝑉𝑑 = 0 𝜇𝑚/𝑠 . At 𝑇 =  129.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , contact line is released because of the 
strong capillary force (highly curved interface close to the contact line shown in the last picture 
from Figure 3.16(a)). This dynamic experiment hence provides another evidence that trace 
induced by the resting droplets on soft films can pin the contact line and hence modify the 
contact angle hysteresis. 

1 mm 

Drop diameter ~ 5 mm
PDMS thickness ~ 100 µm

Shear modulus ~ 1 kPa

Resting time ~ 30 min

Memory effects in static elastowetting
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.
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Fig. 5 Relaxation of the ridge under the contact line following the

removal of the drop for a resting time of 30 minutes (A-C) and 2 min-

utes (D-F). In both cases 5µL water droplets were placed on a freshly

prepared thick PDMS substrate (thickness 1358µm, shear modulus

1.2kPa) and a region of ⇠ 750⇥ 750µm
2

was scanned at regular in-

tervals with a 3D profiler (Microsurf 3D, Fogal Nanotech, France)

with a lateral resolution of 1.89µm and a vertical resolution of 50nm.

The first scan was acquired roughly 20s following the removal of the

drops. The color-coded heights are in microns. As seen in D-F, no

trace could be detected for a residence time of 2 minutes. For a res-

idence time of 30 minutes on the other hand (A-C), the footprint of

the drop is initially around 0.5µm and and is still around 100nm after

4800s. G: Time evolution of the height of the trace following drop

removal (same parameters as in A-C). The blue circles are the exper-

imental data and the solid orange curve is the theoretical prediction

given by equation (46). For the theoretical curve, the droplet radius

and substrate stiffness were taken from the experiment while the sur-

face tension was taken as gs = 40mN/m and the poroelastic Poisson

Ratio was taken as n = 0.3. The effective diffusion coefficient D
?

was

found by fitting the data with the model. The best fit for D
?

was found

to be ⇠ 2 · 10�11
m

2
/s, in good agreement with other values found in

the literature.

on the measurement of fundamental material properties of con-
siderable practical interest, such as its surface tension or contact
angle hysteresis. Those footprints will also affect drop spreading.
In addition, because nanoscale surface features are strong enough
to affect the polarity and the migration of living cells56–59, we
expect that the new theoretical developments presented in this
paper will be important to finely model the locomotion of cells in
living tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting prob-
lem has introduced a new divergence: the solvent concentration
diverges as ⇠ log |r�R| near the contact line. While several ap-
proaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation, frac-
ture or instabilities could occur at the contact line60,61. Indeed,
the coexistence of multiple phases at the contact line has been re-
cently reported in indentation experiments22. Further work, for
example based on a nonlinear poroelastic theory, will be needed
in order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because
the presence of a drop change the chemical potential away from
the drop, several drops may interact with each other by mass ex-
change throughout the gel. For thick gels (when the thickness
of the gel is much larger than `s and R), the chemical potential
increases above its reference value away from the drop and will
tend to suck fluid inside the gel. Because large drops will create
a stronger change in chemical potential than small drops we thus
expect large drops to grow at the expanse of smaller droplets. For
thinner gels however, the effect of finite depth is likely to form a
dimple within which the chemical potential drops below its ref-
erence value, and thus promote the growth of smaller droplets
nearby. Although speculative, this possibility might open the road
to new original methods to control droplet nucleation and dew
collection on soft materials.
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FIGURE 3.16: Pinning of the contact line by a pre-induced trace from a resting droplet. Flux rate: 10 𝜇𝐿/𝑚𝑖𝑛. 
(a) Side view of the moving contact line. Scale bar is 0.2 𝑚𝑚. Before 119.3 seconds, the contact line recedes to 

the left and it is then pinned until 129.6 seconds when it is released. (b) The dynamic contact angle 𝜃𝑑 as a 
function of time. 
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FIGURE 3.15: Trace left behind after receding a water droplet. The resting time of the droplet is 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 
The droplet diameter, soft PDMS layer thickness, and the shear storage modulus of PDMS gel are 4.97 𝑚𝑚, 

104 𝜇𝑚, and 1.2 𝑘𝑃𝑎, respectively. 

Dynamic pinning 

To strengthen our results on the pinning effect, an additional experiment focused on receding 
dynamics is performed:  a water drop is kept resting on a soft PDMS layer of 20 𝜇𝑚 thick and 
it is removed after 22 minutes. A trace, that is visible with the naked eye, is left behind as is 
similarly shown in Figure 3.15. Afterwards, another droplet of a bigger volume is deposited 
onto the same location of the previous one so that the new resting contact line overruns the trace 
left behind. And this new droplet is retracted back by the pump at fixed flow rate 10 𝜇𝐿/𝑚𝑖𝑛. 
The contact line dynamics is shown in Figure 3.10. In the early stage (< 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), the 
contact line propagates to the left smoothly and it is then pinned when it meets the trace at time 
𝑇 = 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. In the next 10.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the contact angle keeps dropping from 67.3° 
to 24.3° at 𝑉𝑑 = 0 𝜇𝑚/𝑠 . At 𝑇 =  129.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , contact line is released because of the 
strong capillary force (highly curved interface close to the contact line shown in the last picture 
from Figure 3.16(a)). This dynamic experiment hence provides another evidence that trace 
induced by the resting droplets on soft films can pin the contact line and hence modify the 
contact angle hysteresis. 

1 mm 

Hysteresis increases from ~5° to ~ 14° on 
PDMS when the drop is left at rest for 30 

minutes on PDMS

Time-dependent hysteresis was also 
observed previously on elastomers

Extrand and Kumagai (1996)
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Sliding velocity on PDMS much smaller
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Viscoelastic effects in elastowetting

Zhao et al (PNAS, 2018)
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Abstract 

Thanks to their tunable mechanical and physico-chemical properties, hydrogels and elastomers are involved in 
a broad range of applications, from uses in cell culture to control the differentiation and the migration of cells, to the 
collection and handling of fluids. Nonetheless, the wetting of these soft materials is still not well understood. Surface 
tension at interfaces deform these soft materials and the mechanical response of gels must be taken into account. Up to 
now, most of studies of the wetting of soft solids (elastowetting) have modelled gels as linear hyperelastic materials. 
However, gels are both viscoelastic and poroelastic, each contribution having its characteristic dynamics. In addition, 
gels may also respond non-linearly, in particular for displacements larger than their thickness.  

The purpose of the POLYWET project is to bring together the expertise of the LSPM and MSC labs in numerical 
modelling, nonlinear mechanics and the physico-chemistry of soft interfaces, in order to take a major leap in our 
understanding of elastowetting. Through studies of the impact of poro-visco-elasticity and mechanical non-linearities 
on elastowetting, two effects that are still largely unexplored in the field of elastowetting, we aim at unravelling new 
physical phenomena of both fundamental and practical importance. In addition, we also aim at developing a new 
theoretical/numerical activity, with a strong focus on nonlinear mechanics, between the LSPM and MSC labs. 

Résumé 
 

Grâce à leurs propriétés mécaniques et physico-chimique modulables, les hydrogels et les élastomères possèdent 
une large gamme d’applications, depuis une utilisation dans les cultures cellulaires pour contrôler la différentiation et la 
migration des cellules jusqu’à la manipulation de fluides ou la collecte de rosée. En dépit de cette vaste gamme 
d’applications, le mouillage de ces matériaux mous reste mal compris. En effet l’application de forces capillaires aux 
interfaces est suffisante pour déformer ces matériaux et leur réponse mécanique doit être prise en compte pour 
comprendre les observations expérimentales. Jusqu’à présent, la vaste majorité des études portant sur le mouillage des 
solides mous (appelé aussi « elastomouillage) ont traité les gels comme des solides linéaires purement élastiques. En 
réalité, ces derniers sont en fait à la fois visco-élastiques et poro-élastiques, chaque contribution présentant une 
dynamique spécifique. Par ailleurs, ces gels peuvent également présenter des réponses non-linéaires, en particuliers 
lorsque les déplacements à la ligne de contact sont de l’ordre de l’épaisseur du gel. 

L’objectif du projet POLYWET est de réunir les compétences des laboratoires LSPM et MSC en terme de 
modélisation numérique, de mécanique non-linéaire et de physico-chimie des interfaces molles afin d’effectuer un saut 
majeur dans notre compréhension de l’élastomouillage. A travers des études poussées sur l’impact de la poro-visco-
élasticité et des non-linéarités mécaniques sur l’elastomouillage, deux effets pour le moment largement inexplorés dans 
le contexte de l’elastomouillage, nous chercherons à découvrir de nouveaux phénomènes physiques de portée 
fondamentales et présentant également des retombées pour plusieurs applications industrielles. Par ailleurs, nous 
chercherons aussi à faire émerger une nouvelle activité théorique/numérique, principalement axée sur la mécanique non-
linéaire, entre les laboratoires LSPM et MSC. 
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Nonlinear effects in elastowetting

Large deformations of a pre-stretched 
Neo-Hookean material 

with constant surface energy:
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Elastic energy density:

Surface energy density:

2D integral over 
the deformed area
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The elastocapillary ridge as a non-integer disclination

Robin Masurel,1 Matthieu Roché,1 Laurent Limat,1 Ioan Ionescu,2 and Julien Dervaux1, ⇤

1Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057,
Sorbonne Paris Cité, 10 Rue A. Domon et L. Duquet, F-75013 Paris, France

2Laboratoire des Sciences des Procédés et des Matériaux,
Université Paris 13, CNRS UPR 3407, Sorbonne Paris Cité,

99 Avenue J.-B. Clement, F-93430 Villetaneuse, France
(Dated: November 6, 2018)

All phases of matter, solid, liquid or gas, present some excess energy, compared to their bulk,
at their interfaces with other materials. This excess of energy, known as the surface energy, is a
fundamental property of matter and is involved in virtually all interface problems in science, from
the shape of bubbles, crystals and biological cells to the delicate motion of some insects on water.
Because of their high cohesive internal energies, the surface energies of solids di↵er fundamentally
from those of fluids and depend on the solid deformations. This so-called Shuttleworth e↵ect is well
established for metals but is highly debated for amorphous materials such as glasses, elastomers or
biological tissues with recent experimental results yielding strictly opposite conclusions with regards
to its very existence. Using a combination of analytical results and numerical simulations, we show
here that those seemingly opposite results can be reconciled due to the existence of a nonlinear
elastic force acting on the elastocapillary ridge and conclude that: i) there is no large Shuttleworth
e↵ect in soft elastomers, ii) the Neumann construction does not hold in elastowetting, except under
infinitesimal deformations and iii) the elastocapillary ridge behaves as a non-integer disclination.

As noted by Gibbs [1], the surface energy of an inter-1

face �, defined as the energy required to create a unit2

of area by a cleaving process, di↵ers conceptually from3

the surface tension ⌥ of the same interface, which is de-4

fined as the force required to create a unit of surface5

through the stretching of this interface. This di↵erence6

is of no consequences for fluids as molecules rearrange7

themselves upon stretching so as to maintain a constant8

intermolecular distance, such that � = ⌥ for fluids [2]. In9

sharp contrast, molecules in a perfectly elastic solid can-10

not rearrange themselves and the stretching of a material11

alters the intermolecular distance such that, in general,12

� 6= ⌥. However, those two quantities are not indepen-13

dent and are related through the Shuttleworth equation14

[3]: ⌥(�) = �(�) + @�/@� where � is the stretch paral-15

lel to the interface. A model-free determination of the16

magnitude of the Shuttleworth e↵ect, ie the di↵erence17

⌥(�) � �(�), is a di�cult task as there is no direct way18

to measure solid surface stresses. Nonetheless, reliable19

measurements for ⌥(�) and �(�) have been obtained for20

various metals [2, 4–7].21

For amorphous materials however, there is a striking22

lack of experimental data and no consensus has been23

reached even with regards to the very existence of the24

Shuttleworth e↵ect for such materials [8, 22]. In the light25

of this gap, it has been suggested recently that the physics26

of wetting, i.e the interplay between liquid drops and27

solid surfaces, might shed light on this matter because28

both the deformation of the solid by surface tension as29

well as the equilibrium configuration of the drop criti-30

cally depend on the surface energy of the solid [9–11]. In31

this line of thought, Schulman et al [8] have measured32

the macroscopic contact angles ↵ of various liquids on33

strained glassy and elastomeric materials (Fig.1 A and B)34

and concluded that glasses exhibit strain-dependent sur-35

face energies while polymeric materials do not. Building36

upon the rapidly developing field of elastowetting [12–21],37

Xu et al have focused, in another experiment [22], on the38

ridge formed at the free surface of a soft elastomer below39

the contact line of a liquid drop (Fig1-C). According to40

the linear theory of elastowetting the opening angle ✓ of41
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FIG. 1: Schematic representation and notations for the problem.
A: a flat layer with initial thickness H and infinite lateral dimen-
sions is first biaxially stretched. A drop is then deposited on this
stretched surface and further deforms the elastic layer. B: The
shape of the drop depends on the macroscopic contact angle ↵. C:
below the contact line, a ridge is formed with opening angle ✓.

this ridge is given by ✓ = ⇡ � �`/�s and is thus solely a42

function of the ratio between the surface energy of the43

drop �` and that of the solid �s. This elegant result is44

typically interpreted as the linear approximation of the45

Neumann construction ✓ = ⇡�2arcsin(�`/2�s) that rules46

the equilibrium of liquid drops on liquid layers. When47

the elastomeric layer was subject to a biaxial stretch of48

magnitude � however, they observed an opening of this49

ridge, i.e and increase in ✓ with �. This result led the au-50

thors to conclude to the existence of a Shuttleworth e↵ect51

(@�s/@� 6= 0) in elastomers. Furthermore, this e↵ect was52

not small. On the contrary, it was found that the sur-53



Nonlinear effects in elastowetting

 Solid I
spherical cap of radius: R

surface energy: 𝛾
elastic modulus: µI ≈ mPa

Solid II
circular layer of thickness: H

surface energy: 𝛾s

elastic modulus: µII ≈ kPa

element size at 
the contact line 

~ 10nm

Approximation of the elastowetting problem as two solids in contact:

de Pascalis et al (2018)
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Numerical minimization of the total energy
              is performed by a Finite Element Method under FreeFem++
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Results from the numerical simulations

Drop radius R: 1.3 mm
Elastic layer thickness H: 50 µm

Shear modulus µ: 1.6 kPa
Solid surface energy 𝛾s: 30mN/m

Liquid surface energy 𝛾: 40mN/m
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FIG. 2: Results from the numerical simulations and comparison with the linear theory. A: schematic representation of the structure of the
ridge with height d and profile ⇣(r0). B and C: Structure of the elastocapillary ridge below the contact line without (resp. with) prestretch
in panel B (resp. C). The solid lines are the results from the numerical simulation while the dotted lines show the linear theory. For all
simulations presented in this paper, the initial thickness of the elastic layer is 80µm to remain close to a typical experimental setup. The
macroscopic contact angle ↵ is taken to be ⇡/2 and the radius of the drop is large (drop volume 5µL and ⇢ ⇠ 1.33mm) in order to minimize
the influence of the finite size of the drop and focus mostly on the possible e↵ects of the prestretch and the nonlinearities. The height is
normalized by �`/µ and the coordinate r

0 is normalized by `s = �s/2µ. The insets in B and C show the detailed structure of the ridges
(over a total width of `s) at a true aspect ratio (i.e same normalization by `s for height and width). The linear model and the numerical
simulations have been shifted vertically to allow for a better comparison between the two. D: Maximum ridge height, in microns, as a
function of the liquid surface tension �` for a solid surface tension �s = 30mN/m. E: opening angle as a function of the ratio �`/2�s for
di↵erent values of the prestretch. The blue dashed line is the prediction from the linear theory ✓ = ⇡ � �`/�s while the black dotted line
is the results from the Neuman construction ✓ = ⇡ � 2arcsin(�`/2�s). F: opening angle as a function of the prestretch � for various values
of the ratio �`/2�s. The light dashed lines are the results from the nonlinear approximation (6).

f
E
z ⇡ �4⇡ST (0)

rr ⇣(R) = �2µ(⇡ � ✓)(�2 � 1

�4
)⇣(R) (4)

The analogy with the Peach-Koehler force is even more1

obvious in formula (4). Indeed, the vertical component of2

the Peach-Koehler force on a surface dislocation simply3

reads 2[Trzuz] where the bracket operator [f ] denotes the4

jump of f across the defect. In the case of a dislocation,5

the stress field itself is continuous while the jump of the6

displacement uz is non-zero (and defined as the Burger7

vector). In our case the displacement uz is continuous8

while the shear stress is discontinuous at the triple line9

(as seen in Fig.3-A) as it follows from the boundary con-10

dition at the free surface that Trz = �T
(0)
rr @⇣/@r

0. Using11

this expression in the Peach-Koehler formula, one imme-12

diately recovers expression (4). A rather interesting fea-13

ture of the force (4) is that is it essentially independent14

of the elastic modulus because the height of the ridge15

is inversely proportional to the substrate shear modulus16

⇣(R) = a(R,H)�` sin↵/(µg1(�)). Here a(R,H) is sim-17

ply a geometric parameter that is weakly dependent on18

the thickness H and the droplet size R, provided that19

both are larger than the elastocapillary length `s, and20

whose value is roughly ⇠ 0.25. Thus we have the ap-21

proximation f
E
z ⇡ ��` sin↵/(2g1(�))(�2� 1/�4)(⇡� ✓).22

It is then easily seen that the Eshelby force f
E
z has the23

same e↵ect on the triple line as a surface energy of mag-24

nitude �` sin↵/(2g1(�))(�2�1/�4). We may thus define25

an ”apparent surface tension” ⌥:26
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⇢
1 +

�` sin↵
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�
9 + �
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(5)

which reduces to: ⌥ ⇡ �s

n
1 + 3�` sin↵

�s
(�� 1)

o
at small27

�. Furthermore, equation (5) leads to the following ap-28

proximation for the opening angle of the ridge:29
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Comparison between linear and nonlinear theories
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FIG. 2: Results from the numerical simulations and comparison with the linear theory. A: schematic representation of the structure of the
ridge with height d and profile ⇣(r0). B and C: Structure of the elastocapillary ridge below the contact line without (resp. with) prestretch
in panel B (resp. C). The solid lines are the results from the numerical simulation while the dotted lines show the linear theory. For all
simulations presented in this paper, the initial thickness of the elastic layer is 80µm to remain close to a typical experimental setup. The
macroscopic contact angle ↵ is taken to be ⇡/2 and the radius of the drop is large (drop volume 5µL and ⇢ ⇠ 1.33mm) in order to minimize
the influence of the finite size of the drop and focus mostly on the possible e↵ects of the prestretch and the nonlinearities. The height is
normalized by �`/µ and the coordinate r

0 is normalized by `s = �s/2µ. The insets in B and C show the detailed structure of the ridges
(over a total width of `s) at a true aspect ratio (i.e same normalization by `s for height and width). The linear model and the numerical
simulations have been shifted vertically to allow for a better comparison between the two. D: Maximum ridge height, in microns, as a
function of the liquid surface tension �` for a solid surface tension �s = 30mN/m. E: opening angle as a function of the ratio �`/2�s for
di↵erent values of the prestretch. The blue dashed line is the prediction from the linear theory ✓ = ⇡ � �`/�s while the black dotted line
is the results from the Neuman construction ✓ = ⇡ � 2arcsin(�`/2�s). F: opening angle as a function of the prestretch � for various values
of the ratio �`/2�s. The light dashed lines are the results from the nonlinear approximation (6).
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The analogy with the Peach-Koehler force is even more1

obvious in formula (4). Indeed, the vertical component of2

the Peach-Koehler force on a surface dislocation simply3

reads 2[Trzuz] where the bracket operator [f ] denotes the4

jump of f across the defect. In the case of a dislocation,5

the stress field itself is continuous while the jump of the6

displacement uz is non-zero (and defined as the Burger7
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0. Using11

this expression in the Peach-Koehler formula, one imme-12

diately recovers expression (4). A rather interesting fea-13

ture of the force (4) is that is it essentially independent14

of the elastic modulus because the height of the ridge15

is inversely proportional to the substrate shear modulus16

⇣(R) = a(R,H)�` sin↵/(µg1(�)). Here a(R,H) is sim-17

ply a geometric parameter that is weakly dependent on18

the thickness H and the droplet size R, provided that19

both are larger than the elastocapillary length `s, and20

whose value is roughly ⇠ 0.25. Thus we have the ap-21

proximation f
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z has the23
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FIG. 3: A: Color-coded shear stress distribution
in the ridge below the triple line obtained from
the numerical simulations (� = 1.2, �`/�s = 0.8
and other parameters as specified in the caption
of Fig.2). The dimensions of the region shown
here is 2`s ⇥ 2`s. The upper part of the panel
shows the jump of the shear stress at the free
surface across the contact line. B: comparison
between the experimental data of [22] for the
opening angle of the ridge as a function of the
prestretch and the numerical simulations as well
as formula (6).

Note that the expressions above are based on a very1

crude approximation of the Eshelby force because we have2

neglected here the self-force of the disclination on itself3

as well as the force induced by the Laplace pressure on4

the defect. Although these contributions are higher-order5

contributions than the leading term presented in equa-6

tion (4), they can become significant when �`/2�s is of7

order unity, even in the case � = 1, as seen in Fig.(2)-E.8

Nonetheless, the formula (6) already provides a reason-9

able approximation for the opening angle of the ridge, as10

seen in Fig.(2)-F. Interestingly, it should be noted that11

the existence of an elastic restoring force, which magni-12

tude is proportional to the height of the ridge and to the13

shear modulus of the substrate, as in (4), was recently14

reported in molecular dynamics simulations [40].15

We now compare those theoretical predictions to avail-16

able experimental data. On an unstretched PDMS sub-17

strate the opening angle of the ridge was measured by18

[22] as 91.2� for a glycerol droplet (�` = 41 ± 1mN/m).19

According to the Neumann construction, this yield a solid20

surface energy of 29mN/m, that is ⇠ 40% larger than the21

surface energy of liquid PDMS (21±1mN/m). According22

to the nonlinear simulations on the other hand, such an23

opening angle yields a surface energy of 24 mN/m, much24

closer to the surface energy of liquid PDMS. Turning now25

to the dependence ✓(�), it can be seen in Fig.3-B that the26

numerical simulations, in absence of any Shuttleworth ef-27

fect, reproduce the experimental data of [22]. From this28

nice agreement, we may conclude that the experimental29

observations of [22] are essentially a consequence of the30

nonlinear elastic force acting on the elastocapillary ridge31

and that, within the experimental error bars, there is no32

need to assume a Shuttleworth e↵ect in soft elastomers, in33

complete agreement with the experimental data of [8]. In34

addition, we also show in Fig. 2-F and Fig. 3-B the pre-35

diction given by the analytical formula (6) as a function of36

the prestretch �, which shows a very nice agreement with37

the numerical and experimental data. It is important to38

note however, that the apparent surface tension defined39

in equation (5) only appears in the force balance at the40

tip of the ridge as a consequence of the corner singular-41

ity and cannot be used as a pseudo-Shuttleworth e↵ect42

that would apply everywhere at the surface of the elas-43

tic domain. Finally, let us comment on a few remarkable44

behaviors of equation (5). First, this expression predicts45

that the e↵ective surface tension decreases under com-46

pression and vanishes at � ⇡ 0.82. Second, between this47

critical value and the critical stretch of the Biot instabil-48

ity � ⇡ 0.666 [41], the e↵ective surface tension is negative49

because the Peach-Koehler force exceeds the restoring ef-50

fect of the solid surface energy. This region of the phase51

space would therefore be an interesting regime to explore52

in experiments.53

To conclude, we have unraveled in this study a new54

general balance of forces (1)-(2) ruling the behavior of55

contact lines on soft materials. This conceptual break-56

through has shed new light on various highly debated57

issues in elastowetting and shown the failure of the Neu-58

mann construction for liquid drops on solid surfaces as59

well as the absence of the Shuttleworth e↵ect in elas-60

tomers. Our approach will likely help understand and61

control the complex interactions between drops on soft62

surfaces. Indeed, defects such as disclinations may repel63

or attract each other, depending on their strengths S,64

relative orientations and external stress field, and our ap-65

proach might help predict in a quantitative, original and66

simple way the interactions between droplets. Further-67

more, while we have focused in this study on the static68

of elastowetting, some interesting phenomena might also69

arise in dynamical elastowetting [42–44] because Peach-70

Koehler forces are additional source of dissipations beside71

classical visco-elastic stresses. Moving beyond the elas-72

towetting problem studied in this work, we also antici-73

pate that the theoretical framework developed here will74

provide a valuable tool to understand complex physical75

phenomena related to the formation of singular struc-76

tures in elasticity, such as the long-standing issue of cusp77

formation arising in the Biot instability [45–48].78
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Good agreement between 
simulations and experiments

No Shuttleworth effect 
in soft elastomers !

BUT

Nonlinearities
are important !



Origin of this nonlinear behavior ?

Elastic force acting at the tip
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FIG. 3: A: Color-coded shear stress distribution
in the ridge below the triple line obtained from
the numerical simulations (� = 1.2, �`/�s = 0.8
and other parameters as specified in the caption
of Fig.2). The dimensions of the region shown
here is 2`s ⇥ 2`s. The upper part of the panel
shows the jump of the shear stress at the free
surface across the contact line. B: comparison
between the experimental data of [22] for the
opening angle of the ridge as a function of the
prestretch and the numerical simulations as well
as formula (6).
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Analogous to the Peach-Koehler force 
acting on a dislocation !
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fE = lim
✏!0

Z

�✏

T · ⌫d` (4)

f
E
z ⇠ 2[Trz⇣] / ��`(�

2 � 1/�4)(⇡ � ✓) (5)

where �✏ is a contour of radius ✏ enclosing the defect and1

⌫ is the outward unit normal vector to the surface �✏. It2

has the dimensions of a force per unit length and is also3

called the J-integral in the context of fracture mechanics4

[33]. The formulas (1)-(2) are a new generalized law for5

contact lines in which the last terms of the r.h.s are the6

force per unit length induced by the elastic substrate.7

Some interesting limiting cases can readily be obtained8

from the force balances (1) and (2). In the case of a fluid9

at rest, the Eshelby force fE vanishes [35]. This follows10

from the fact that fluids are described using the current11

(deformed) configuration as the reference configuration12

(thus F = I) and the first Piola-Kircho↵ stress tensor re-13

duces to the Cauchy stress which, at rest, is just a pres-14

sure P = �pI. The contour integral (5) is thus 0 and one15

recovers the Neumann construction that rules the equi-16

librium at triple lines between fluids. The situation is17

di↵erent for fluids in motion because the shear stress will18

induces configurational forces at the triple line [35]. On a19

soft substrate without hysteresis, the Eshelby force van-20

ishes in the framework of infinitesimal deformations (i.e21

in the limit where �`/2�s ! 0) and the liquid surface22

tension is solely balanced by the surface energy of the23

solid. As we shall see shortly thereafter, the situations24

is markedly di↵erent at finite value of �`/2�s. When the25

substrate is infinitely rigid on the other hand, the angles26

✓
� and ✓

+ vanish. Equation (1) thus reduces to a gen-27

eralized Young equation with line tension [28] while (2)28

indicates that the vertical surface traction is solely bal-29

anced by the substrate elasticity for hard materials [16].30

These nonlinear equations are then solved numerically31

using a method we developed previously [29]. In the32

supplementary materials we also derive some analytical33

results that can be obtain in the limit where the dis-34

placement field u is small, i.e its amplitude is of order35

of a small parameter ✏, in which case it is referred to as36

an incremental deformation field. Two deformation pro-37

files given by this analytical solution (eq 9), as well as38

their height d, are plotted in Fig.2 B-D, together with39

the results from the numerical simulation in absence of40

prestretch (� = 1 in Fig.2-B) and in the case of an ini-41

tial prestretch (� = 1.5 in Fig.2-C) for �`/2�s = 0.8. As42

shown in Fig.2-B the incremental theory provides a nice43

approximation to the numerical simulations of the nonlin-44

ear problem for the overall structure of the ridge, at both45

large (r & `s = �s/(2µ)) and small (r . `s = �s/(2µ))46

scale in absence of any prestretch (� = 1). On the47

other hand, when the elastic layer is initially prestretched48

(� = 1.5), the agreement between the incremental theory49

and the numerical simulations is poor as seen in Fig.2-C50

as the height of the ridge is smaller than expected from51

the incremental theory and has a broader opening an-52

gle. Focusing on the height of the ridge only (Fig.2-D)53

indicates that, in presence of prestretch, the numerical54

simulations coincide with the incremental solution only55

at small values of the ratio �`/2�s but start deviating56

from the incremental theory very quickly. In absence of57

prestretch, the agreement is much better over the whole58

range of �`/2�s investigated here. We now focus on the59

opening angle ✓ of the ridge which is the central observ-60

able allowing to conclude on the existence of the Shut-61

tleworth e↵ect. As seen in Fig.2-E, the opening angle62

of the ridge decreases with increasing value of the ratio63

�`/2�s, as expected from the linear theory, but surpris-64

ingly strongly increases with the prestretch, in opposition65

with the prediction from the linear theory. Furthermore,66

note that even in the case � = 1, the opening angle is67

always larger than predicted by the linear theory, with68

the di↵erence increasing with the ratio �`/2�s. This dif-69

ference is of course even more pronounced with the Neu-70

mann construction which fails to predicts the opening71

angle of the ridge. Fig.2-F shows that the opening angle72

✓ increases monotonously as a function of the prestretch73

� for various values of the ratio �`/2�s.74

In the preamble of this paper, two questions were raised75

pertaining to the validity of the Neumann construction76

at finite deformation in the presence or absence of a pre-77

stretch �. The results presented in this study allow us78

to provide answers to these questions. In absence of any79

pre-stretch (� = 1), and for values of the ratio �`/2�s up80

to ⇠ 0.9, the linear theory ✓ = ⇡ � �`/�s is a reasonable81

approximation to the numerical solution of the fully non-82

linear elastowetting problem, with less than 5% relative83

di↵erence between the two models for both the opening84

angle ✓ of the ridge as well as the height of the ridge. The85

agreement is not as good however with the Neumann con-86

struction ✓ = ⇡ � 2arcsin(�`/2�s). More precisely, for a87

value of the ratio �`/2�s ⇠ 0.9, typical of experiment,88

the predictions for the opening angle between the Neu-89

mann construction and the nonlinear simulations di↵er90

by roughly 30�. As this di↵erence is much larger than91

the precision of typical experimental measurements, we92

may answer no to the first question ”does the Neumann93

construction hold at experimentally relevant finite value94

of �`/2�s ? The situation is even worse for a drop de-95

posited on a prestretched elastic layer. In this case, the96

numerical simulation starts deviating from the incremen-97

tal theory, even at very small deformations �`/2�s ⌧ 1.98

In particular, and this is the main result of this work, the99

simulations predict that the opening angle ✓ of the ridge100

is an increasing function of the prestretch �. This depen-101

dence is a pure nonlinear e↵ect as both the incremental102

theory as well as the Neumann construction predict that103

✓ does not depend on �. To the second question ”does104

the Neumann construction hold when the elastic layer is105

initially prestretched before the deposition of the drop, at106

experimentally relevant finite values of �`/2�s ?”, the an-107

swer is therefore also no.108

While a full analytical solution of the nonlinear prob-109

lem is out of reach at present, some analytical progress110

can nonetheless be made to understand more quantita-111

tively the curve ✓(�) shown above. Because the stress112

field around the elastocapillary ridge is equivalent to that113

around a wedge disclination, it can be shown within the114

framework of linear elasticity [36, 37, 39] that the Es-115

helby force (5) for a disclination line in an external stress116

field can be calculated as: fE ⇡ �2e✓ ⇥ (2⇡SM · e✓).117

This nonlinear force on a disclination is a direct analog118

of the Peach-Koehler force [23] acting on a dislocation.119
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pre-stretch (� = 1), and for values of the ratio �`/2�s up80

to ⇠ 0.9, the linear theory ✓ = ⇡ � �`/�s is a reasonable81

approximation to the numerical solution of the fully non-82

linear elastowetting problem, with less than 5% relative83

di↵erence between the two models for both the opening84

angle ✓ of the ridge as well as the height of the ridge. The85

agreement is not as good however with the Neumann con-86

struction ✓ = ⇡ � 2arcsin(�`/2�s). More precisely, for a87

value of the ratio �`/2�s ⇠ 0.9, typical of experiment,88

the predictions for the opening angle between the Neu-89

mann construction and the nonlinear simulations di↵er90

by roughly 30�. As this di↵erence is much larger than91

the precision of typical experimental measurements, we92

may answer no to the first question ”does the Neumann93

construction hold at experimentally relevant finite value94

of �`/2�s ? The situation is even worse for a drop de-95

posited on a prestretched elastic layer. In this case, the96

numerical simulation starts deviating from the incremen-97

tal theory, even at very small deformations �`/2�s ⌧ 1.98

In particular, and this is the main result of this work, the99

simulations predict that the opening angle ✓ of the ridge100

is an increasing function of the prestretch �. This depen-101

dence is a pure nonlinear e↵ect as both the incremental102

theory as well as the Neumann construction predict that103

✓ does not depend on �. To the second question ”does104

the Neumann construction hold when the elastic layer is105

initially prestretched before the deposition of the drop, at106

experimentally relevant finite values of �`/2�s ?”, the an-107

swer is therefore also no.108

While a full analytical solution of the nonlinear prob-109

lem is out of reach at present, some analytical progress110

can nonetheless be made to understand more quantita-111

tively the curve ✓(�) shown above. Because the stress112

field around the elastocapillary ridge is equivalent to that113

around a wedge disclination, it can be shown within the114

framework of linear elasticity [36, 37, 39] that the Es-115

helby force (5) for a disclination line in an external stress116

Purely topological force
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FIG. 3: A: Color-coded shear stress distribution
in the ridge below the triple line obtained from
the numerical simulations (� = 1.2, �`/�s = 0.8
and other parameters as specified in the caption
of Fig.2). The dimensions of the region shown
here is 2`s ⇥ 2`s. The upper part of the panel
shows the jump of the shear stress at the free
surface across the contact line. B: comparison
between the experimental data of [22] for the
opening angle of the ridge as a function of the
prestretch and the numerical simulations as well
as formula (6).

Note that the expressions above are based on a very1

crude approximation of the Eshelby force because we have2

neglected here the self-force of the disclination on itself3

as well as the force induced by the Laplace pressure on4

the defect. Although these contributions are higher-order5

contributions than the leading term presented in equa-6

tion (4), they can become significant when �`/2�s is of7

order unity, even in the case � = 1, as seen in Fig.(2)-E.8

Nonetheless, the formula (6) already provides a reason-9

able approximation for the opening angle of the ridge, as10

seen in Fig.(2)-F. Interestingly, it should be noted that11

the existence of an elastic restoring force, which magni-12

tude is proportional to the height of the ridge and to the13

shear modulus of the substrate, as in (4), was recently14

reported in molecular dynamics simulations [40].15

We now compare those theoretical predictions to avail-16

able experimental data. On an unstretched PDMS sub-17

strate the opening angle of the ridge was measured by18

[22] as 91.2� for a glycerol droplet (�` = 41 ± 1mN/m).19

According to the Neumann construction, this yield a solid20

surface energy of 29mN/m, that is ⇠ 40% larger than the21

surface energy of liquid PDMS (21±1mN/m). According22

to the nonlinear simulations on the other hand, such an23

opening angle yields a surface energy of 24 mN/m, much24

closer to the surface energy of liquid PDMS. Turning now25

to the dependence ✓(�), it can be seen in Fig.3-B that the26

numerical simulations, in absence of any Shuttleworth ef-27

fect, reproduce the experimental data of [22]. From this28

nice agreement, we may conclude that the experimental29

observations of [22] are essentially a consequence of the30

nonlinear elastic force acting on the elastocapillary ridge31

and that, within the experimental error bars, there is no32

need to assume a Shuttleworth e↵ect in soft elastomers, in33

complete agreement with the experimental data of [8]. In34

addition, we also show in Fig. 2-F and Fig. 3-B the pre-35

diction given by the analytical formula (6) as a function of36

the prestretch �, which shows a very nice agreement with37

the numerical and experimental data. It is important to38

note however, that the apparent surface tension defined39

in equation (5) only appears in the force balance at the40

tip of the ridge as a consequence of the corner singular-41

ity and cannot be used as a pseudo-Shuttleworth e↵ect42

that would apply everywhere at the surface of the elas-43

tic domain. Finally, let us comment on a few remarkable44

behaviors of equation (5). First, this expression predicts45

that the e↵ective surface tension decreases under com-46

pression and vanishes at � ⇡ 0.82. Second, between this47

critical value and the critical stretch of the Biot instabil-48

ity � ⇡ 0.666 [41], the e↵ective surface tension is negative49

because the Peach-Koehler force exceeds the restoring ef-50

fect of the solid surface energy. This region of the phase51

space would therefore be an interesting regime to explore52

in experiments.53

To conclude, we have unraveled in this study a new54

general balance of forces (1)-(2) ruling the behavior of55

contact lines on soft materials. This conceptual break-56

through has shed new light on various highly debated57

issues in elastowetting and shown the failure of the Neu-58

mann construction for liquid drops on solid surfaces as59

well as the absence of the Shuttleworth e↵ect in elas-60

tomers. Our approach will likely help understand and61

control the complex interactions between drops on soft62

surfaces. Indeed, defects such as disclinations may repel63

or attract each other, depending on their strengths S,64

relative orientations and external stress field, and our ap-65

proach might help predict in a quantitative, original and66

simple way the interactions between droplets. Further-67

more, while we have focused in this study on the static68

of elastowetting, some interesting phenomena might also69

arise in dynamical elastowetting [42–44] because Peach-70

Koehler forces are additional source of dissipations beside71

classical visco-elastic stresses. Moving beyond the elas-72

towetting problem studied in this work, we also antici-73

pate that the theoretical framework developed here will74

provide a valuable tool to understand complex physical75

phenomena related to the formation of singular struc-76

tures in elasticity, such as the long-standing issue of cusp77

formation arising in the Biot instability [45–48].78
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because nanoscale surface features are strong enough to affect
the polarity and the migration of living cells,56–59 we expect that
the new theoretical developments presented in this paper will
be important to finely model the locomotion of cells in living
tissues and on soft materials.

In our study, we have also seen that another consequence of
merging the linear poroelastic theory with the elastowetting pro-
blem introduces a new divergence: the solvent concentration
diverges as Blog|r ! R| near the contact line. While several
approaches might be able to regularize this divergence, for example
by taking into account the finite thickness of the gel, the material
and geometrical nonlinearities or through the introduction of a
finite width for the contact line, the existence of this divergence
suggests that extreme phenomena such as phase separation,
fracture or instabilities could occur at the contact line.60,61 Indeed,
the coexistence of multiple phases at the contact line has been
recently reported in indentation experiments.22 Further work, for
example based on nonlinear poroelastic theory, will be needed in
order to shed light on the behavior of gels near contact lines.

In a different line of thought, the wetting of saturated gels by
drops of their own solvent opens interesting questions. Because the
presence of a drop changes the chemical potential away from the
drop, several drops may interact with each other by mass exchange
throughout the gel. For thick gels (when the thickness of the gel is
much larger than cs and R), the chemical potential increases above
its reference value away from the drop and will tend to suck fluid
inside the gel. Because large drops will create a stronger change in
the chemical potential than small drops we thus expect large drops
to grow at the expense of smaller droplets. For thinner gels however,
the effect of finite depth is likely to form a dimple within which the
chemical potential drops below its reference value, and thus pro-
motes the growth of smaller droplets nearby. Although speculative,
this possibility might open a new route to new original methods to
control droplet nucleation and dew collection on soft materials.
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Fig. 5 Relaxation of the ridge under the contact line following the
removal of the drop for a resting time of 30 minutes (A–C) and 2 minutes
(D–F). In both cases 5 mL water droplets were placed on a freshly prepared
thick PDMS substrate (thickness 1358 mm, shear modulus 1.2 kPa) and a
region of B750 " 750 mm2 was scanned at regular intervals using a 3D
profiler (Microsurf 3D, Fogal Nanotech, France) with a lateral resolution of
1.89 mm and a vertical resolution of 50 nm. The first scan was acquired
roughly for 20 s following the removal of the drops. The color-coded
heights are in microns. As seen in (D–F), no trace could be detected for a
residence time of 2 minutes. For a residence time of 30 minutes on the
other hand (A–C), the footprint of the drop is initially around 0.5 mm and is
still around 100 nm after 4800 s. (G) Time evolution of the height of the
trace following drop removal (same parameters as in A–C). The blue
circles are the experimental data and the solid orange curve is the
theoretical prediction given by eqn (46). For the theoretical curve, the
droplet radius and substrate stiffness were taken from the experiment
while the surface tension was taken as gs = 40 mN m!1 and the poroelastic
Poisson ratio was taken as n = 0.3. The effective diffusion coefficient D*
was found by fitting the data with the model. The best fit for D* was found
to be B 2 " 10!11 m2 s!1, in good agreement with other values found in
the literature.
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well for PDMS

(but more experimental data are needed)



Conclusions
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