ONGOING PROJECTS
The steering committee with advice of the scientific committee issues each year research calls aiming at funding cooperative research projects, support to equipment, posts-docs, and PhD students.
| |||
University | Coordinator(s) | Laboratory | Project |
Paris Diderot | J.Y. PIQUEMAL | ITODYS | projet d'équipement d'une canne multi-échantillons pour le microscope électronique en transmission JEOL 2010 |
Paris 13 | A. BOUDRIOUA | LPL | Cristaux photoniques linéaires et non linéaires "Smart Cut" : applications aux sources lasers et l'optique quantique |
Paris 13 | F. CHALLALI | LSPM | Etude des Propriétés fonctionnelles de Matériaux en couches minces déposées par Pulvérisation Magnétron (EPMa2) |
Paris Diderot | A. PONTON | MSC | BIONAMA |
Paris 13 Paris Diderot |
L. MUSEUR A. KANAEV C. MANGENEY C. PERRUCHOT |
LPL LSPM ITODYS ITODYS | Processus hautes pressions/laser pour la fabrication de nanocomposites hybrides TiO2/HEMA |
| |||
University | Coordinator(s) | Laboratory | Project |
Paris Diderot | N. FELIDJ | ITODYS | Hétéro-dimères de nanoparticules (Au-Ag) thermosensibles pour la plasmonique : application à la diffusion Raman exaltée de surface (HOTSPOT) |
Paris 13 | G. DUTIER | LPL | Cold atoms for probing suspended monolayer graphene properties |
Paris 13 Paris Diderot | M. NIKRAVECH J.Y. PIQUEMAL | lspm ITODYS | Reformage à sec du méthane par le dioxyde de carbone à l'aide d'un procédé plasma-catalyse |
Paris 13 | C. ROND | LSPM | Laser Diagnostics for Dusty Plasmas |
Paris Diderot | P. BRUNET C. MANGENEY | MSC ITODYS | Mouillage, démouillage, séchage et auto-assemblage sur des surfaces stimulables micro ou nano-patternées |
Paris 13 Paris Diderot | M. HABOUSSI L. ROYON P. DJEMIA | LSPM MSC | Matériaux pour l'énergie et confort optimisé |
Paris 13 Paris Diderot | D. FAURIE / S. MERCONNE F. MAMMERI | LSPM ITODYS | Synthesis and characterization of new flexible multiferroic materials for magnetic recording applications |
Paris 13 | S. FARHAT | LSPM | Optimisation de la synthèse de nanoparticules d'oxyde de zinc et leur intégration dans une cellule à colorant |
| |||
University | Coordinator(s) | Laboratory | Project |
Paris 13 | J. Achard A. Boudrioua | LSPM LPL | Elaboration and study of 2D photonics crystals in diamond : applications to lasers microcavities |
Paris Diderot Paris 13 | C. Ricolleau O. Brinza | MPQ LSPM | Study by transmission electronic microscopy of the segregation of impurities within dislocations in diamond |
Paris 13 | M. Chérif V. Repain | LSPM MPQ | Static and dynamic magnetic properties at the nanometric scale of cobalt ultra-thin layers and nanoparticles |
Paris 13 Paris Diderot | A. Kanaev L. Museur N. Felidj/J. Grand | LPL ITODYS | Nanostructured materials for plasmonics |
Paris 13 Paris Diderot | M. Chehimi A. Gicquel C. Mangeney | LSPM ITODYS | Diazonium salts and diamond electrodes: a sensible coupling to obtain of sensitive, stable and successful sensors |
Paris 13 Paris Diderot | A. Stachkevitch Y. Roussigné P. Doppelt J.Y. Piquemal | LSPM ITODYS | Meta-materials based on the synthesis and the organization of anisotropic and ferromagnetic nanoparticles in diamagnetic matrices |
Paris 13 | P. Lafarge | MPQ | Quantum interferences in anthraquinone-based molecular devices |
Paris 13 | L. Znaidi A. Boudrioua | LSPM LPL | Sol-gel synthesis and 1D/2D structuration of ZnO and TiO2 thins layers to elaborate photonic crystals |
RESUME DES PROJETS 2014 HEFOR Résumé en anglais This structuring project concerns molecular spintronics. It aims to structure a new and pluridisciplinary research activity around this emerging topic within the SEAM Labex. It gathers several laboratories and teams from the University Paris Diderot and the University Paris 13 that have already collaborated with success in the past. Here, the scientific goal is to realize and to study the chemical, electronic, magnetic and spin transport properties of hybrid heterostructures based on carbon nanotubes, ferromagnetic metals and molecules. A main aspect will be the study of ferromagnetic metals filled carbon nanotubes as a spin nano-source integrated in spintronics devices like magnetic tunnel junctions and spin valves. This project will be conducted with a promising multi-scale approach yet unobserved worldwide. The different physical and chemical properties will be probed at the molecular scale thanks to scanning tunneling microscope and at the microscopic scale thanks to transport measurements in devices and to a powerful optical spectroscopy technique named Brillouin spectroscopy. We propose also a static approach followed by a dynamical one to ensure a deep understanding (a key element for further industrial transfer) of such promising mixture of different materials. Finally, we want to put forward the various skills and strenghts existing within the SEAM Labex with an exciting scientific project. |
HEFOR Résumé en français Ce projet structurant proposé au Labex concerne l'électronique de spin moléculaire. Il vise à structurer une activité de recherche pluridisciplinaire autour de cette thématique émergente réunissant plusieurs laboratoires et équipes de l'Université Paris Diderot et de l'Université Paris 13. Les différentes équipes impliquées ont déjà collaboré par le passé avec succès. Ici, le but scientifique est de réaliser des hétérostructures hybrides à base de nanotubes de carbone, de matériaux ferromagnétiques tels que le Co, Ni ou Fe et de molécules puis d'étudier leurs propriétés chimiques, électroniques, magnétiques et de transport de spin. Un point central du projet sera notamment l'étude de nanotubes de carbone remplis de métaux ferromagnétiques comme nanoélectrode ferromagnétique dans des nanodispositifs hybrides de spintronique tels que des vannes de spin et des jonctions tunnel magnétiques. Ce projet sera conduit via une approche multi-échelle encore inédite au niveau international. En effet, les propriétés physiques et chimiques seront sondées à l'échelle moléculaire grâce au microscope à effet tunnel puis à l'échelle microscopique grâce à des mesures de transport et à une puissante technique de spectroscopie optique : la spectroscopie Brillouin. Nous proposons aussi une approche statique puis dynamique très prometteuse grâce à la complémentarité des techniques qui nous permettra une compréhension exhaustive de ces nouvelles hétérostructures hybrides (un élément clé pour un transfert de technologie rapide). Finalement, nous souhaitons ainsi mettre en avant sur le plan international les compétences et forces variées présentes dans le Labex SEAM sur la synthèse chimique, le génie des procédés, de la physique des dispositifs moléculaires à celle des surfaces et du magnétisme. |
Graph_Mat Résumé en anglais The realization of large area graphene with high quality and low cost is currently a bottleneck for technological applications and electronic properties measurements in carbon-based devices. The first part of this project aims to develop and share methods of preparation of graphene in total autonomy within the labex. Different strategies for graphene functionalization will be followed with the goal to lift some bottlenecks in three particular fields: electronics, biosensors and energy. Depositions of organic molecules by chemical, electrochemical and physical means, and deposition of inorganic materials in liquid or ultrahigh vacuum will be used to functionalize the graphene. One originality of this project is to measure the properties of different samples by coupling different experimental techniques (Raman, TEM, STM, transport) to explore common samples which will allow multi-scale analysis from atom to micrometer scale of the modified graphene. The last step of the project will be to achieve, if possible, proof of concept of a device. The innovation potential of this project concerns mainly the field of energy where industrial partners and international collaborations have already been identified. However confidential constraints will have to be followed if promising techno-economic results are obtained. |
Graph_Mat Résumé en français L’élaboration du graphène combinant à la fois des grandes surfaces, des techniques à bas coût et une haute qualité du matériau reste un verrou non seulement pour les applications technologiques mais aussi pour des mesures précises des propriétés électroniques. Une première partie, cruciale dans ce projet, vise à développer et à partager des méthodes d'élaboration du graphène en totale autonomie au sein du Labex. Différentes stratégies de fonctionnalisation du graphène seront ensuite poursuivies guidées par l'idée de lever des verrous dans 3 domaines d'applications particuliers: électronique, biocapteurs et énergie. Des dépôts de molécules organiques par voies chimique, électrochimique et physique, ainsi que des dépôts de matériaux inorganiques en milieu liquide ou en ultra-vide seront effectués afin de fonctionnaliser le graphène. Une des originalités de ce projet consiste à mesurer les propriétés des différents échantillons en couplant différentes techniques expérimentales (RAMAN, TEM, STM, transport) pour étudier des échantillons communs ce qui permettra une analyse multi-échelle, de l'atome au micromètre, du graphène modifié. La dernière étape du projet sera de réaliser si possible la preuve de concept d'un dispositif. Le potentiel d'innovation de ce projet concerne en premier lieu l'énergie où des partenaires industriels ont déjà été identifiés. Des contraintes de confidentialité seront cependant à respecter si des résultats prometteurs au sens techno-économique sont identifiés. |
MMEMI Résumé en anglais The project thereafter presented aims to aggregate some of the SEAM LABEX existing numerical codes, to get a tool able to perform both multi-scale and multi-physic computations. The tool we aim to develop is supposed to be an upgradable one, as well as multipurpose and easy to use. We Would like to first focus the application of such a tool on surfaces and interfaces studies, for they becomes more and more the key point of industrial applications (in Term of function, and then, reliability). We would like to use two federative subjects for some Labex research teams to launch this numerical global tool development: the first one deals with metal hydrogen embrittlement, the second one on contact line propagation. These Two subjects, sharing a lot of theoretical concepts, are multi-scales (and Potentially multi-physic) by nature. Experimental investigations Linked to these problematic are, last, currently studied by Labex Research teams, leading to a double level structuration effect: on the one hand, the federation of modeling tasks and tools, initially begin developed for a given purpose without any further connections, and more globally, on the second hand, by the opportunities such a multi-purpose modeling tool might lead, in term of experimental results understandings. |
MMEMI Résumé en français Ce projet a pour objectif de fédérer les outils numériques existants au sein des laboratoires du LABEX SEAM, afin de disposer d'un moyen de simulation multi-échelle et multi-physique. L’approche que nous proposons se veut : performante, flexible, et très évolutive. Le travail est centré autour du problème des interfaces et surfaces, dont l'importance va croissante dans les applications industrielles (amélioration des performances, fonctionnalisation des matériaux, les interfaces conditionnent la durée de vie…). Nous prenons prétexte de deux sujets fédérateurs au sein du Labex, de part leur aspect transversal, pour mettre en ouvre et démontrer la pertinence de notre approche multi-échelle. La première porte sur la fragilisation par l'hydrogène des aluminiums (matériau clef pour l'aéronautique, problème général de l'endommagement des métaux et alliages). La seconde étude porte sur la mouillabilité des surfaces (applications pour les lentilles de contact, les tissus artificiels, l'électronique souple…). Ces deux thématiques ont en commun de nombreux aspects en terme de modélisation et sont par essence le siège de phénomènes multi-échelles et multi-physiques. Les aspects expérimentaux liés à ces problématiques, enfin, sont également au cour de l'intérêt de personnels du Labex, ce qui ne peut que renforcer l'effet structurant du projet : au niveau modélisation, par la rencontre, la mise en regard et le développement conjoints d'outils numériques évoluant initialement de manière totalement indépendante, et à un niveau plus global, par les perspectives qu’ouvrent de tels modèles multi-échelles vis-à-vis de la compréhension de phénomènes observés expérimentalement. |
NanoSmarc Résumé en anglais We propose here the design of new hierarchical and multifunctional nanostructured hybrid materials combining various ferroic properties including magnetic, electrical and mechanical properties, through a suitable control of the interactions at the interfaces in order to optimize the magnetoelectric coupling (ME) at room temperature and over a wide range of energies. These materials, of interest for applications in magnetic recording, aim at being switchable by applying a magnetic or electric field. Obtaining more efficient hybrid (organic-inorganic 0-0) or inorganic-inorganic 1-1) systems depends strongly on the judicious combination of piezoelectric and magnetostrictive materials and/or ferroelectric and ferromagnetic in hierarchical nanostructures. The key parameters that influence the magnetoelectric coupling are the following: raw phases, their crystalline phase, shape, amount, and the nature and extent of hybrid interfaces where the coupling occurs. Hence, we will study ferromagnetic nano-objects of various dimensionalities (spherical nanoparticles dispersed in a matrix, 2D organized arrays, anisotropic nanoparticles) dispersed in a matrix; this latter may be a ceramic or a ferroelectric polymer in order to obtain various interfaces for controlling both the coupling and dipolar ME interactions. This current and major issue in magnetic materials brings together partners from Labex SEAM around three main objectives: (i) the synthesis and structural characterization of nanostructured materials, (ii) the relationship between structure and ME coupling and (iii) the transfer of knowledge for the design of original devices. |
NanoSmarc Résumé en français Nous proposons ici la conception de nouveaux matériaux biphasés architecturés et multifonctionnels associant diverses propriétés ferroïques parmi lesquelles magnétiques, électriques et mécaniques, en jouant astucieusement sur les interactions aux interfaces, afin d'optimiser le couplage magnétoélectrique (ME) à température ambiante et sur une large gamme d'énergie. Ces matériaux commutables par l'application d'un champ magnétique ou électrique sont actuellement très recherchés pour des applications dans l'enregistrement magnétique. L’obtention de matériaux biphasés (organiques-inorganiques 0-0 ou inorganiques-inorganiques I-i) plus performants dépend notamment étroitement de la combinaison judicieuse de matériaux piézoélectriques et magnétorésistif et/ou ferroélectriques et ferromagnétiques dans une architecture maîtrisée. Les paramètres clés qui influencent le couplage magnétoélectrique sont les types de structures combinées constituant les matériaux résultants, leur forme, la proportion des différentes phase, et surtout, la nature et l'étendue des interfaces auxquelles se produit le couplage multiferroïque désiré. Ainsi, nous étudierons des nano-objets ferromagnétiques de dimensionnalités différentes (nanoparticules sphériques dispersées dans une matrice, ou organisées sur un film ou nanoparticules anisotropes dispersées dans une matrice) ; la matrice pourra être une céramique ou un polymère ferroélectrique, afin d'obtenir diverses interfaces (0-I ou I-I) permettant de contrôler à la fois les interactions dipolaires et le couplage ME. Ce sujet actuel et majeur en matériaux magnétiques rassemble des partenaire du Labex SEAM autour de 3 objectifs : (i) l'élaboration et la caractérisation structurale de matériaux architecturés originaux 2D ou 3D, (ii) la relation structure/couplage ME et (iii) l'étude du transfert de savoirs pour la conception de dispositifs originaux. |
RESUME DES PROJETS 2013 PlasMag Fabricating plasmonic -; magnetic nanoparticles (NPs) is a new challenge in material sciences, because such nanostructures would be promising candidates for many applications in medical imaging and cancer treatment by hyperthermia. The PlasMag project focuses on the development and the practical use of FexOy/Au nanohybrids for both magnetic and plasmonic hyperthermia and as a dual MRI and CT scan imaging contrast agent. In a first place, our multidisciplinary consortium composed by research’s teams from the four laboratories of the SEAM Labex, will work on the fabrication of nanohybrids with technologically relevant magnetic and plasmonic properties. This fundamental aspect of nanomaterial developments requires studying the close link between the atomic structure and the physical properties of NPs. Through collaborative efforts with medical research groups and industrial partners we will undertake applicative studies on the utilization of nanohybrids for thermal ablation of tumors by magnetic and plasmonic hyperthermia and the most used in vivo imaging techniques in hospitals (MRI and X-ray computed tomography). The most innovative aspect of this project is the study of the interaction between NPs and their application medium (cellular environment). Indeed, these interactions are of primary importance because they could alter the properties of the NPs and be toxic for the patient. Based on our knowledge and knowhow in material science, we proposed new nano-metrological methods to detect and quantify biotransformation and biodegradation processes of nanomaterials in the organism, from the macroscopic down to the atomic scale. Therefore, we intend to understand the relation between the structure and the life cycle of nanomaterials in the organism, which is the key to creating efficient and safe -nanomedicines- in their application environments. |
Dolphin This project will advance the state of the art of the fabrication technologies of aluminum oxides, directing the material evolution to the demonstration of two classes of photonic devices: low-loss AlGaAs waveguides for parametric generation in the near and mid infrared, and unprecedented dielectric components in the terahertz range. The approach followed is based on the unique know-how on thin-layer and bulk ultra-porous aluminum oxides within the consortium, and on a fully transversal synergy between material synthesis/characterization and device design/fabrication/test, where material optimization will be pursued in the framework of the specific constraints associated to the targeted demonstrators. Compared to existing aluminas, the DOLPHIN oxides will bring together several crucial advantages: an ultra-low dielectric permittivity, the potential of refractive-index gradients and a chemically tunable hydrophilic character in the bulk case, as well as a low-defect fabrication process in the waveguide-integrated thin layers. This will be accomplished with the complementary competences of three leading research groups in photonics, materials science and process engineering, plus the contribution of two world-class partners in microscopy and THz semiconductor laser sources. The DOLPHIN project will establish a long-lasting structuring model of federative research for the SEAM Labex. |
Capture The Project CAPTURE aims at the development of innovative devices for the mid and far infrared domains (THz spectral range) based on diamond technological platform. The device architectures that we will develop combine strong sub-wavelength confinement of the infrared radiation and an increased coupling efficiency with the free space through the use of antennas. On one hand, the use of heavily doped diamond layers allows the achievement of new electrically pumped sources of THz radiation where emission of confined plasmons is enhanced through microcavity effects. On the other hand, such architectures will enable the integration of optomechanical elements with the THz cavities for an efficient transduction between the far-infrared and visible wavelengths, in order to obtain a new detection method of the THz waves. This project relies on the dynamic collaboration between the QUAD and DON teams from MPQ and the PEMA team from LSPM, each of them bringing their well-recognised know-how respectively in the fields of THz optoelectronics, optomechanics and diamond growth. |
Post-Docs 2014 |
![]() |
Dr Min Ruan
obtained her PhD from the University of Wuhan (China) where she worked on “The Experiments and Theoretical Investigations on the Al-based Superhydrophobic Materialsand Their Anti-Icing Activityâ€. |
![]() |
Dr Prasana Swaminathan
obtained his PhD from the Indian Institute of Technology of Madras (India) where he worked on “Studies on the effects of Surface radiation and radiation in participating medium on natural convectionâ€.
|
![]() |
Dr Walid Dachraoui
obtained his PhD from the EMAT (Electron Microscopy for Material Science), UniversiteidAntwerpen (Belgium), where he worked on «studying local order and octahedral tilting in perovskite-based compounds by Transmission Electron Microscopy ». |
![]() |
Dr Oleksandr Stepanenko
obtained his PhD from the University of Nice Sophia Antipolis (France), in the LPMC laboratory (UMR 7336). |
![]() |
Dr Roberto Fernandez Garcia
obtained his first PhD in material science from the UAM-CSIC Madrid (Spain),and his second PhD in nanophotonics from the Imperial College London (United Kingdom). |
![]() |
Post-Docs 2013 |
![]() |
Dr. Hasan-al MEHEDI trained at the Bangladesh University of Engineering and Technology, Dhaka, and at the Royal Institute of Technology, Stockholm, Sweden and obtained his PhD in 2012 at Institute NÉEL, University Joseph Fourier and cnrs, Grenoble, France with a work on the realization of micro-and nanostructures of diamond by catalytic etching. As a SEAM Labex post-doc he will contribute to nanostructuration of diamond in view of two main applications: the elaboration of photonic crystals and the fabrication of nanopillars containing an NV coloured centre for the production of single photons. This project is developed by V. Mille and colleagues at the LSPM laboratory (PEMA group), together with A. Boudrioua and colleagues at the LPL laboratory |
![]() |
Post-Docs 2012 |
![]() |
Dr. (Ms.) Emek Seyrek first studied in Istanbul (Turkey) then received the PhD from Purdue University (USA). She then worked in Turkey, France and Switzerland and developed an expertise in colloïd science, biophysics, chemistry and chemical engineering. As a SEAM Labex post-doctoral fellow she is : preparing magnetic nanowires displaying fluorescent behavior from maghemite, cobalt ferrite, and biopolymers such as glycoaminoglycans and chitosan. studying the microrheology of cells using nanowires of various architectures and different cell types assessing the cell damages induced by the mechanical movements of the nanowires This research project aims at demonstrating the use of actuated wires to kill tumor cells and is supervised by J-F. Berret at MSC Lab |
![]() |
La visite du Professeur L-H. PENG a eu lieu entre le 4 et le 17 juillet 2013. Ce séjour entre dans le cadre de la collaboration mise en place entre l’université Paris 13 et l’Université NTU (National Taiwan University) de Taipei (Taiwan).
|
![]() |
Copyright © 2012 LABEX SEAM - All rights reserved. - Terms of use Developed by amdfr.fr